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Abstract— Unmanned aerial vehicles (UAVs) are widely used
for surveillance and monitoring to complete target search tasks.
However, the short battery life and moderate computational capa-
bility hinder UAVs to process computation-intensive tasks. The
emerging edge computing technologies can alleviate this problem
by offloading tasks to the ground edge servers. How to evaluate
the search process so as to make optimal offloading decisions and
make optimal flying trajectories represent fundamental research
challenges. In this paper, we propose to utilize the concept of
uncertainty to evaluate the search process, which reflects the
reliability of the target search results. Thereafter, we propose
a deep reinforcement learning (DRL) technique to jointly make
optimal computation offloading decisions and flying orientation
choices for multi-UAV cooperative target search. Specifically,
we first formulate an uncertainty minimization problem based on
the established system model. By introducing a reward function,
we prove that the uncertainty minimization problem is equivalent
to a reward maximization problem, which is further analyzed
by a Markov decision process (MDP). To obtain the optimal
task offloading decisions and flying orientation choices, a deep
Q-network (DQN) based DRL architecture with a separated
Q-network is then proposed. Finally, extensive simulations vali-
date the effectiveness of the proposed techniques, and compre-
hensive discussions on how different parameters affect the search
performance are given.

Index Terms— Unmanned aerial vehicle, cooperative target
search, edge computing, computation offloading, deep reinforce-
ment learning (DRL).

I. INTRODUCTION

UNMANNED aerial vehicles (UAVs) have been widely
invoked for surveillance and search-related applications,
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to perform complicated tasks located in hazardous and even
hostile environment [1]. Multi-UAVs can cooperate to perform
tasks more efficiently than a single UAV [2]. Accordingly,
multi-UAV cooperative target search is becoming a research
hotspot and is widely used in many fields, such as agri-
culture, industry, disaster sensing, search & rescue, forest
fire, intelligent transportation systems and crowd surveil-
lance [3], [4], [5]. For example, the UAVs can accomplish
the power line inspection in a safer and more cost-efficient
manner than human patrol, allowing a fast detection of a
series of defects, including line damage, cracking, galvaniza-
tion loss, corrosion, and insulating breakage [6], [7]. Also,
the UAVs can search mountainous areas after rainstorms to
determine the potential mudslides, which could guide the
timely evacuation and relocation of residents and impor-
tant facilities that are seriously threatened. It is noteworthy
that the term target search in our paper refers to not only
finding targets but also achieving surveillance and anomaly
detection.

However, the short battery life and moderate computational
capability restrict UAVs to process computation-intensive and
delay-sensitive search tasks [8]. To address this issue, the
integration of edge computing into UAVs may significantly
enhance the service capability of UAVs by offloading the
tasks to the edge nodes [9], [10], [11], [12]. Even so, the
target detection algorithms can not return absolutely credible
results about the search area due to the inevitable detection
errors, resulting in uncertainty about the target distribution in
that search area. Here, uncertainty reflects the reliability of
the target detection results. The lower the uncertainty of the
search area, the higher the reliability of the target detection.
By searching one area repeatedly, the uncertainty of this area
can be reduced, thus improving the reliability. However, since
UAVs are generally energy-limited and the search process is
generally delay-sensitive, minimizing the uncertainty of search
area under energy and time constrains becomes a challenge.
To solve this issue, two challenges must be addressed: 1) How
to optimally make offloading decisions, so that more energy
could be saved to search more areas? 2) How to dynamically
plan their trajectories, so that the uncertainty of the search
area can be minimized under time constrains?

Several previous efforts have focused on the UAV-assisted
edge computing framework [13], [14], [15], [16], [17].
In existing literature, UAVs are mostly considered as serv-
ing nodes with powerful communication and computation
capabilities to assist the mobile devices in performing
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computation-intensive and latency-sensitive tasks, thus form-
ing the UAV-assisted mobile edge computing (MEC) network.
The computation offloading is mostly from the mobile users
or Internet of things (IoT) users on the ground to the UAVs,
and resource scheduling problems are generally formulated
to minimizing either the total delay or energy consumption.
Several works consider the computation offload problem where
UAVs need to offload computation-intensive tasks to ground
edge servers [18], [19], [20], [21], [22]. However, only per-
fect search of UAV is considered in existing works. For a
practical search scenario, target detection algorithms can not
return absolutely credible results about the search area due to
inevitable detection errors, resulting in uncertainty about the
target distribution in that search area.

In light of the existing works, in this article, we con-
sider an edge computing enabled multi-UAV cooperative tar-
get search framework characterizing by imperfect search of
UAVs, where UAVs themselves as users would generate much
task data that should be computed locally or offloaded to
the ground edge nodes. Inspired by the DRL [23], [24],
we further propose a deep Q-network based task offload-
ing decision-making and flying orientation choosing strategy,
to minimize the uncertainty while ensuring energy and delay
constraints. The contributions of this article are summarized
as follows.

• Model and Problem Formulation: Considering the imper-
fect search of UAVs, an edge computing enabled
multi-UAV cooperative target search framework is devel-
oped, where the optimal computation offloading and
trajectory design are jointly considered under both energy
and search time constraints. By introducing the concept
of uncertainty, the cooperative target search is formulated
as an uncertainty minimization problem.

• Algorithm Design: To obtain the optimal task offloading
decision-making and flying orientation choosing actions,
a Markov decision process (MDP) is first developed and
a DQN based DRL architecture is then established to
learn the best actions. To the best of our knowledge, this
paper is the first attempt to adopt the DRL method in
multi-UAV cooperative target search problem character-
izing by imperfect search of UAVs.

• Validation: To verify the performance of our proposed
algorithm, we compare our proposed algorithm with other
DRL based methods including DDQN and DDPG by
simulations. The superiority of our proposed algorithm is
presented based on simulation results. Moreover, we also
conduct extensive simulations to discuss how different
parameters affect the search performance under our pro-
posal and other DQN based schemes.

The reminder of this article is organized as follows.
The related work is presented in Section II. Section III
depicts the system model and uncertainty minimization prob-
lem. Section IV presents the problem analysis and MDP.
In Section V, a DQN-based task offloading decision-making
and flying orientation choosing strategy is proposed.
In Section VI, performance evaluation results are presented.
The conclusion is drawn in Section VII.

II. RELATED WORKS

In this section, we survey the existing literature on cooper-
ative target search, computation offloading in UAV scenario,
and the DRL based decision-making technique.

A. Cooperative Target Search of UAVs

Many researchers have focused on cooperative target search
for UAV swarms/teams in a dynamic and risky environment.
Most target search problem is formulated to find a reliable
path for UAVs. Marvelous solutions have been proposed,
such as grid-based search algorithm [25] and predictive algo-
rithm [26]. With the development of intelligent systems and
cooperative control theory, the target search by intelligent
algorithms is emerging. By dividing the global optimization
problem into several local optimization problems, an intelli-
gent self-organized algorithm (ISOA) to solve a cooperative
target search planning problem for multi-UAVs is proposed
in [27]. [28] proposes a dynamic two-stage scheme by apply-
ing the concept of the closed search to multi-UAVs cooperative
target search. Based on the cooperation-competition mecha-
nism, the search algorithm was designed for the first stage. For
the second stage, a search tracking approach was developed
for return. Similarly, to solve the closed cooperative target
search problem, [29] proposes an immune genetic algorithm
to improve the search efficiency. Considering the complex
constraints of multi-UAVs, [30] proposes a dynamic discrete
pigeon-inspired optimization algorithm, which can reach the
global optima in a discrete environment. These works ignoring
the processing of computation-intensive and latency-sensitive
tasks.

B. Computation Offloading and Trajectory Design for UAVs

For computation offloading, the UAVs in most existing
works serve as computing nodes to assist edge systems in
providing mobile users with better services [31], [32]. For
example, [33] investigates the problem of task offloading from
IoT mobile devices (IMDs) to the UAV, aiming to minimize
the overall energy consumption for accomplishing the tasks.
[34] investigates a collaborative UAV-assisted MEC systems,
where UAVs are regarded as assisted edge clouds (ECs) for
large-scale sparely-distributed user equipment. [35] considers
that a UAV equipped with an energy transmitter (ET) and
an MEC server charges sensor devices (SDs) and provides
computing service for active SDs. In [36], a mobile UAV-
assisted edge computing framework is considered, where a
computing server mounted on a fixed-wing UAV assists the
smart ground smart terminals (STs) with their computing
tasks. By jointly optimizing the trajectory and CPU frequency
of the UAV, the UAV’s energy consumption is minimized.
Similarly, [37] proposes an air-ground integrated aerial com-
puting framework where a cloudlet server and multiple mobile
edge servers are mounted on drones to provide reliable and
efficient edge computing services for ground devices. To this
end, the joint implementation of computation offloading and
trajectory design is investigated. Considering the computation
offloading, resource allocation, and flying trajectory schedul-
ing of UAV, [38] investigates a UAV-assisted mobile edge
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computing system, where a UAV equipped with an MEC
server provides the computation capability for the overlaid
ground smart mobile devices (SMDs).

However, UAVs also need to offload demanding com-
puting tasks to the ground base station (GBS) when
computation-intensive tasks are generated. Several efforts
have been done in this area in recent years [8], [18], [19],
[20], [21], [22]. From the security perspective, an energy-
efficient computation offloading strategy is designed in [8]
for UAV-Edge computing systems. To achieve high quality
of service (QoS), [18] designs a UAV-Edge-Cloud compu-
tation offloading model for multi-UAVs, aiming to support
computation-intensive tasks. In [19], UAVs are deployed in
smart city for data sensing and social services. The moving
vehicles are considered to assist the computation offload-
ing for UAVs. A bargaining game is then formulated and
an offloading algorithm is proposed to obtain the optimal
offloading strategy. Similarly, [20] leverages the city-wide IoT
infrastructure to enhance UAV’s computation and commu-
nication capability. An optimal stopping time problem over
a semi-Markov process is then formulated. [21] considers
a problem of cooperative computation offloading for UAVs,
where a UAV can offload computation workload to edge
servers in MEC. [22] investigates a UAV-oriented computation
offloading system, where the UAV desires to complete its
onboard computation demands with the assistance of a ground
edge-computing infrastructure. To this end, the UAV’s longi-
tudinal mobility, communication and computation are jointly
optimized to minimize the whole energy consumption.

C. DRL-Based Decision-Making for UAVs

As to the DRL-based decision-making technique, [39] con-
siders to choose the best communication technology (i.e.,
Wi-Fi or cellular) for task offloading of UAVs. To minimize
the overall delay perceived by users and the energy on
UAVs, a multi-agent reinforcement learning (MARL) method
is proposed. In MARL, UAVs can continuously learn the
best actions. In [13], the UAVs are regarded as helpers to
provide value-added edge computing services. A MARL based
method is proposed for the formulated computation offloading
problem to determine the proper target helper and bandwidth
allocation. Considering UAVs act as mobile aerial base stations
in a post-disaster scenario, [40] formulates a UAV trajectory
optimization problem to maximize the uplink throughput of
UAV network. By transforming the original problem into a
constrained Markov decision-making process, a safe-DQN-
based algorithm is proposed to select the optimal actions for
UAVs. Similarly, a safe-DQN-based algorithm is proposed
in [41] to jointly optimize video levels selection and power
allocation in a UAV-enabled video streaming scenario.

D. Summary

In summary, although marvelous solutions are proposed in
existing works. Many works consider UAVs as serving nodes
to provide computing services for ground mobile users or
devices. In these works, joint computation offloading, resource
allocation and trajectory design is mainly considered. Several

Fig. 1. Edge computing enabled multi-UAV cooperative target search
framework.

works consider the computation offload problem where UAVs
need to offload computation-intensive tasks to ground edge
servers. The existing works mainly focus on a perfect search
of UAVs. However, for a practical search scenario, target
detection algorithms can not return absolutely credible results
about the search area due to the inevitable detection errors,
resulting in uncertainty about the target distribution in that
search area. For a certain search area, UAVs may need to
search it repeatedly to obtain a high-confidence results about
the target distribution. Different from existing works, this
paper investigate the imperfect target search scenario, where
the optimal computation offloading from UAVs to ground edge
servers and trajectory design are jointly considered under both
energy and search time constraints. More importantly, inspired
by the powerful capability of DRL in addressing complex
optimization problem, a DQN-based edge computing enabled
multi-UAV cooperative target search strategy is proposed.
Actually, to the best of our knowledge, this paper is the first
attempt to adopt the DRL method in multi-UAV cooperative
target search characterizing by imperfect search of UAVs,
where task offloading decisions and trajectory design are
jointly optimized under energy and search time constraints.

III. EDGE COMPUTING ENABLED MULTI-UAV
COOPERATIVE TARGET SEARCH FRAMEWORK

A. System Description

Fig. 1 illustrates the edge computing enabled multi-UAV
cooperative target search framework. We consider the search
area E is a bounded X ×Y area, which is further discretized
and rasterized into Lx×Ly cells. The UAVs fly at a constant
altitude H over these cells. A bird’s view camera is mounted
to the underside of each UAV and can capture the video
or image of a cell. We denote the search task Tlx,ly in cell
[lx, ly] by two items, i.e., Tlx,ly � {Dlx,ly , Clx,ly}, where
Dlx,ly denotes the data size of Tlx,ly , and Clx,ly denotes the
processing density (in CPU cycles/bit) of Tlx,ly . Note that the
data size of Tlx,ly is assumed to follow a normal distribution
with expectation μ such that E(Dlx,ly) = μ. Assume there
are N UAVs taking off from Noff points and must return to
these points before they run out of energy. For an arbitrary
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Fig. 2. Dynamics model of UAVs.

take-off point j (1 ≤ j ≤ Noff ), its grid position is denoted
by vj = [xj , yj], and Nj UAVs would take off from and return
to j. It is noteworthy that

∑
j Nj = N . A ground base station

(GBS) equipped with an edge server is located in the center
of the search area, providing powerful computing capacities
and acting as a control center for UAVs.

B. Dynamics Model of UAV

At each time step, a UAV can move from the center
of its current cell to the center of one of its neighboring
cells, subject to boundary constraints. The position of UAV
n (n ∈ N = {1, 2, . . . , N}) at time step t is denoted by vt

n =
[xt

n, yt
n] ∈ {1, 2, . . . , Lx} × {1, 2, . . . , Ly}. Correspondingly,

the real position of UAV n is [(xt
n−0.5) X

Lx
, (yt

n−0.5) Y
Ly

, H ].
Let Ot

n denote the orientation set UAV n can choose at time
step t, which is defined as {0 (north), 1 (northeast), 2 (east), 3
(southeast), 4 (south), 5 (southwest), 6 (west), 7 (northwest)}.
As shown in Fig. 2, there are generally five cases for different
orientation choices.

• Case 1: When none of the UAV’s eight neighboring
cells has boundary constraints, the UAV can choose one
orientation ot

n ∈ {0, 1, 2, 3, 4, 5, 6, 7};
• Case 2: When the UAV has reached the boundary of

y-axis when yt
n = 0, the UAV can choose one orientation

ot
n ∈ {0, 1, 2, 6, 7};

• Case 3: When the UAV has reached the boundary of
y-axis when yt

n = Ly, the UAV can choose one orienta-
tion ot

n ∈ {2, 3, 4, 5, 6};
• Case 4: When the UAV has reached the boundary of

x-axis when xt
n = 0, the UAV can choose one orientation

ot
n ∈ {0, 1, 2, 3, 4};

• Case 5: When the UAV has reached the boundary of
x-axis when xt

n = Lx, the UAV can choose one ori-
entation ot

n ∈ {0, 4, 5, 6, 7};

When UAV n moves from one cell to another, the kinetic
energy consumption can be modeled as

Ef
n(ot

n) = �V 2, (1)

where V denotes the UAV’s pre-set flying speed, � is a
coefficient related to flying duration Δ(ot

n) and UAV’s mass
M including its payload, defined as � = 0.5MΔ(ot

n) [42].
For simplicity, we ignore UAV’s weight change during flying.
The flying duration Δ(ot

n) is expressed as

Δ(ot
n) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Y

LyV
, ot

n ∈ {0, 4},
X

LxV
, ot

n ∈ {2, 6},

1
V

√
(
X

Lx
)2 + (

Y

Ly
)2, ot

n ∈ {1, 3, 5, 7}.

(2)

It can be drawn from (2) that the flying duration when
ot

n ∈ {1, 3, 5, 7} has the biggest value. To achieve time-step
synchronization for all UAVs, we adjust the UAV’s flying
speed when ot

n ∈ {0, 4} or ot
n ∈ {2, 6} to guarantee the flying

duration is the same as when ot
n ∈ {1, 3, 5, 7}. In this regard,

we set the length of one time step as Δ = 1
V

√
( X

Lx
)2 + ( Y

Ly
)2.

The flying speed is correspondingly adjusted to

V (ot
n) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Y

LyΔ
, ot

n ∈ {0, 4},
X

LxΔ
, ot

n ∈ {2, 6},

V, ot
n ∈ {1, 3, 5, 7}.

(3)

Then the kinetic energy consumption is correspondingly re-
formulated as

Ef
n(ot

n) = 0.5MΔV (ot
n)2. (4)

C. Search Task Computing and Offloading

We use αt
n = 0 to denote that the search task is processed

locally by UAV n, and αt
n = 1 to denote that the search task

is offloaded to the GBS.
1) Search Task Processed Locally: Let f l

n denote the
processing capability (i.e., the amount of CPU frequency in
cycles/s [43]) at UAV i assigned for local computing. The
power consumption is then modeled as

pl
n = κn(f l

n)3, (5)

where κn is a coefficient related to power in UAV n [14]. The
local execution time of task Tlx,ly is then give by

T local
lx,ly =

μClx,ly

f l
n

. (6)

Then the energy consumption of UAV i for local processing
is expressed as

El
n(lx, ly, t) = (1− αt

n)pl
nT local

lx,ly

= (1− αt
n)κnμClx,ly(f l

n)2. (7)
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2) Search Task Offloaded to GBS: Let L denote the number
of orthogonal licensed channels the GBS provides, each with
the bandwidth of B. We denote the GBS’s grid position by
ug = [xg , yg] and such that the real positions of the GBS is[(

xg − 0.5
)

X
Lx

,
(
yg − 0.5

)
Y
Ly

, 0
]
. Then the distance between

UAV n and the GBS at time step t is then given by

dt
n,g =

√((
xt

n − xg

) X

Lx

)2

+
((

yt
n − yg

) Y

Ly

)2

+ H2. (8)

For the air-to-ground wireless communication, the line-of-
sight (LoS) channels are much more predominant [16].
We consider the wireless links between UAVs and the GBS
are LoS links such that the small-scale fading and shadow
are ignored, and the path loss exponent becomes 2 [15].
Accordingly, the time-varying channel power gain between
UAV n and the GBS at time step t can be modeled as

ht
n,g = h0(dt

n,g)
−2

=
h0((

xt
n − xg

)
X
Lx

)2

+
((

yt
n − yg

)
Y
Ly

)2

+ H2

, (9)

where h0 is the channel power gain at the reference distance
d0 = 1 m [14]. Then the transmission rate from UAV n to the
GBS is expressed as

Rt
n,g =

L

χt
B log2(1 +

Pnht
n,g

σ2
), (10)

where Pn is the transmission power of UAV n, σ2 is the White
Gaussian noise power, χt is the number of UAVs choosing to
transmit their tasks to the GBS, denoted by χt =

∑
n∈N

αt
n.

It is noteworthy that Rt
n,g is time-varying as ht

n,g is changing
during the UAV is flying from one cell to another. However,
the flying distance during task transmission is much less than
the flying altitude H because the transmission time is generally
very short. In this regard, for simplicity, we consider ht

n,g keep
unchanged during task transmission such that Rt

n,g is fixed
during a certain time step. Assume that all χt UAVs share L
channels, then the energy consumption for transmitting μ bits
of search task to the GBS is expressed as

Etr
n (lx, ly, t) =

αt
nPnμ

Rt
n,g

=
αt

nχtPnμ

LB log2(1 +
Pnht

n,g

σ2 )
. (11)

In general, the length and width of a cell are usually tens
of meters, even more than one hundred meters. The maximum
UAV’s speed is tens of meters per second according to the
specification of DJI’s UAV product [44]. In practice, the
average speed of a UAV is about a few meters per second.
Accordingly the order of magnitude of the time consumption
of a UAV flying from a cell to another is usually at several
or even more than ten seconds. As for the computing time,
it is noteworthy that the target detection algorithm usually
needs very low time consumption compared with the length
of one time step. Also, if the image size is high, the image
can be compressed to a small size by many existing mature
and efficient algorithms. However, since we do not focus on
this point and would pay more attention on our proposed

algorithms and strategy, for simplicity, we assume that the
processing of each task takes less than one time step.

D. Objective

Since the search area E is unknown to UAVs, we consider
each cell of E has an associated uncertainty u(lx, ly, t) ∈
[0, 1], indicating UAV’s uncertainty about the target distrib-
ution in that cell. u(lx, ly, t) = 1 means cell [lx, ly] is a
completely unknown area for UAVs at time step t. Uncertainty
also reflects the reliability of the target detection results. The
lower the uncertainty of the cell, the higher the reliability
of the target detection. u(lx, ly, t) will be reduced as the
cell is searched repeatedly, which represents less undetected
information in that cell. According to the Dempster’s rule of
combination and the Dempster-Shafer theory (DST) [45], once
a UAV has searched a cell [lx, ly] at time step t, the uncertainty
associated with that cell is reduced at an uncertainty reduction
rate λ, denoted by

u(lx, ly, t + 1) = λu(lx, ly, t), (12)

where λ can be expressed as λ = 1− δ, and δ is the accuracy
of the target detection.

The overall objective of our system design is to find
the optimal computation offloading and trajectory planning
strategy for UAVs, to minimize the uncertainty over the search
area under energy and time constraints, expressed as

minimize
{α,o}

U = lim
t→min{T ,E}

∑
(lx,ly)∈E

u(lx, ly, t) (13)

s.t. C1:αt
n ∈ {0, 1}

C2: ot
n ∈ Ot

n

C3: V (ot
n) =

⎧⎨
⎩

Y
LyΔ , ot

n ∈ {0, 4}
X

LxΔ , ot
n ∈ {2, 6}

V, ot
n ∈ {1, 3, 5, 7}

C4: Δ ∗T ≤ Θ < Δ ∗ (T + 1), T ∈ N∗

C5: E = max
n∈N

{
En|

En∑
t=0

El
n(t) + Etr

n (t) ≤ Φt=1
n −

Φret,En
n <

En+1∑
t=0

El
n(t) + Etr

n (t), En ∈ N∗
}

where α = [α1, α2, . . . , αN ] and o = [o1, o2, . . . , oN ]. For
arbitrary αn ∈ α and on ∈ o, they are sequential vari-
ables, denoted by αn = [α1

n, α2
n, . . . , α

min{T ,E}
n ] and on =

[o1
n, o2

n, . . . , o
min{T ,E}
n ], respectively. In (13), t→ min{T , E }

indicates that the search process will be terminated once
the deadline of the search process is reached or all UAVs
run out of energy, where T and E denote the maximal
time steps the search process can last under time constraint
and energy constraint, respectively. C1 indicates that a UAV
can choose either local computing or offloading actions. C2
represents that UAVs can choose different orientations under
boundary constraints. C3 shows the flying speed adjustment
after choosing an orientation. C4 specifies the time constraint,
where Θ is the maximal area search time, T is the maximal
time steps. C5 specifies the energy constraint, where Φt=0

n
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denotes the initial energy of UAV n, Φret,En
n denotes the return

energy of UAV n from cell [xn(En), yn(En)] at time step En

to it’s take-off point jn, expressed as

Φret,En
n = 0.5MV djn |[xn(En),yn(En)], (14)

where djn |[xn(En),yn(En)] is the distance from cell
[xn(En), yn(En)] to take-off point jn.

In this paper, we just consider reserving the minimum
kinetic energy required for the return without considering
target detection being performed by the UAV on its way
back to the take-off point. This is because if target detection
is performed by the UAV on its way back to the take-off
point, more energy would be consumed thus that the UAV
can not return to the take-off point. To address this issue,
more energy should be reserved when the UAV makes return
decision. However, the additional energy consumption for task
transmission or local computing can not be determined when
the UAV makes return decision, resulting in that the required
return energy is uncertain. The designed DQN-based task
offloading decision-making and flying orientation choosing
strategy at each cell is based on the deterministic return energy
at that cell. In reverse, the return energy which contains the
energy for task transmission or local computing is also based
on the proposed strategy. As a result, the task offloading
decision-making, the flying orientation choosing, and the
return energy determination are coupled. The uncertain return
energy consumption when considering target detection being
performed by the UAV on its way back to the take-off point
would make the original problem more complex, which is
hard to solve. Accordingly, in this paper, we just consider
the minimum kinetic energy required for return and focus on
the task offloading decision-making and the flying orientation
choosing problems.

IV. PROBLEM ANALYSIS AND MDP

In problem (13), the uncertainty U mainly depends on the
system states and a sequential actions taken by UAVs, includ-
ing task offloading decisions and orientation choices. However,
the actions taken by UAVs are couple and mutually affected.
For instance, if too many UAVs offload their tasks through the
shared wireless channels simultaneously, longer transmitting
time may occur, resulting in more energy consumption. This
hinders a UAV to search more cells to reduce the uncertainty.
Consequently, the task offloading decision-making issue is
crucial for uncertainty reduction.

Also, among all possible orientations, a UAV should fly to
a neighboring cell that can reduce the uncertainty the most.
However, it may occur that several UAVs choose to fly to
the same cell that can respectively reduce the uncertainties
of their own uncertainty maps the most, but the uncertainty
of the search area is not really reduced the most. Moreover,
flying to different cells may lead to different offloading energy
consumption and return energy consumption, further resulting
in different uncertainty reduction. Accordingly, the flying
orientation choosing issue is also crucial for our objective.
The optimal task offloading decision-making and flying orien-
tation choosing strategy forms a complex relationship, making

optimization problem (13) difficult to solve. In the following,
we adopt the Markov decision process (MDP) to analyze the
problem.

A. State Space

We denote the system state at time step t as

St =
{
St

p,St
e,St

d,St
u

}
, (15)

where St
p is the position state of UAVs, St

e is the residual
energy state of UAVs, St

d is the residual search time, St
u is

the uncertainty state of all cells. Since the position of GBS is
fixed and keeps unchanged during target search process, it will
not influence the output of the DQN. Accordingly, the position
state of GBS is not included in the state space. Note that the
system state St is observed at the beginning of time step t.
Detailed system state is defined as follows.

• St
p: We define St

p �
{
st
1,p, s

t
2,p, . . . , s

t
N,p

}
, where st

n,p

(n ∈ N) is the position of UAV n at time step t, expressed
as [xt

n, yt
n];

• St
e: We define St

e �
{
st
1,e, s

t
2,e, . . . , s

t
N,e

}
, where st

n,e

(n ∈ N) is the residual energy of UAV n at the beginning
of time step t;

• St
d: For the residual search time, St

d will be reduced by
Δ in one time step;

• St
u: We define St

u �
{
st
1,u, st

2,u, . . . , st
LxLy,u

}
, where

sLx(ly−1)+lx,u is the uncertainty of cell [lx, ly].

B. Action Space and State Transition

We define the actions taken by UAVs at time step t as
At �

{
At

1,At
2, . . . ,At

N

}
. For an arbitrary UAV n, we define

as At
n �

{
αt

n, ot
n

}
, where αt

n ∈ {0, 1} and ot
n ∈ Ot

n. It is
noteworthy that At is consisted of all possible αt

n and ot
n. The

system state is transitioned as follows.
1) Position State Transition: UAV n’s position [xt

n, yt
n] at

next time step t + 1 after action ot
n is taken can be expressed

as

[xt+1
n , yt+1

n ] =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[xt
n, yt

n + 1], ot
n = 0, yt

n < Ly

[xt
n + 1, yt

n + 1], ot
n = 1,

xt
n < Lx, yt

n < Ly

[xt
n + 1, yt

n], ot
n = 2, xt

n < Lx

[xt
n + 1, yt

n − 1], ot
n = 3,

xt
n < Lx, yt

n > 1
[xt

n, yt
n − 1], ot

n = 4, yt
n > 1

[xt
n − 1, yt

n − 1], ot
n = 5,

xt
n > 1, yt

n > 1
[xt

n − 1, yt
n], ot

n = 6, xt
n > 1

[xt
n − 1, yt

n + 1], ot
n = 7,

xt
n > 1, yn < Ly

(16)

2) Residual Energy State Transition: UAV n’s residual
energy at next time step t + 1 after actions ot

n and αt
n are

taken can be expressed as

Φt+1
n = Φt

n − El
n(t)− Etr

n (t)− Ef
n(ot

n). (17)
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Note that Φt=0
n = Φinit

n denotes the initial energy of UAV n.
To better reflect how the residual energy of UAV n changes
with different actions, we formulate (17) when t > 0 as

Φt+1
n =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Φt
n − El

n − 0.5MΔ( Y
LyΔ )2, αt

n = 0,

ot
n ∈ {0, 4}

Φt
n − El

n − 0.5MΔ( X
LxΔ )2, αt

n = 0,

ot
n ∈ {2, 6}

Φt
n − El

n − 0.5MΔV 2, αt
n = 0,

ot
n ∈ {1, 3, 5, 7}

Φt
n − Etr

n − 0.5MΔ( Y
LyΔ)2, αt

n = 1,

ot
n ∈ {0, 4}

Φt
n − Etr

n − 0.5MΔ( X
LxΔ)2, αt

n = 1,

ot
n ∈ {2, 6}

Φt
n − Etr

n − 0.5MΔV 2, αt
n = 1,

ot
n ∈ {1, 3, 5, 7}

(18)

3) Residual Search Time Transition: Let Γt denote the
residual search time at time step t, indicating the search task
will be expired Γt later. Then the residual search time at time
step t + 1 is expressed as

Γt+1 = Γt −Δ. (19)

Note that Γt=0 = Θ denotes the maximal area search time.
4) Uncertainty State Transition: According to formu-

las (12), the uncertainty of a cell will be reduced as the cell
is searched repeatedly, leading to less undetected information
in that cell. The uncertainty of cell [lx, ly] at next time step
t + 1 can be expressed as

u(lx, ly, t + 1) =

{
λu(lx, ly, t), ∃n∈N, [xt+1

n , yt+1
n ]=[lx, ly]

u(lx, ly, t), otherwise

(20)

Note that if multiple UAVs1 fly to a same cell at the same time
step, the uncertainty of cell [lx, ly] would be updated N t+1

[lx,ly]

times, where N t+1
[lx,ly ] denotes the number of UAVs that would

fly to cell [lx, ly] at time step t. N t+1
[lx,ly ] can be obtained by

N t+1
[lx,ly ] =

N∑
n=1

1{xt+1
n = lx, yt+1

n = ly}, (21)

where 1{τ} is an indicator function which equals 1 if τ is
true and 0 otherwise. The uncertainty updating in (20) can be
re-written as

u(lx, ly, t + 1) = λ
Nt+1

[lx,ly ]u(lx, ly, t), (22)

such that the average uncertainty over the search area at the
next time step is expressed as

U t+1 =

∑
(lx,ly)∈E u(lx, ly, t + 1)

Lx × Ly
, (23)

where Lx × Ly is the number of cells of the search area.

1In this paper, we consider that UAVs would be flying at slightly differing
altitudes in order to minimize the risk of collisions if multiple UAVs fly to a
cell at the same time step.

C. Rewards

The reward in the MDP refers to the system gain of
taking actions At in system state St at time step t. However,
the overall objective of our system design is to minimize
the uncertainty over the search area under energy and time
constraints as formulated in (13). In this regard, we need to
transform the overall objective to an equivalent representation
containing the system gain at each time step. In this paper,
we introduce a reward function to describe the uncertainty
reduction when actions At are taken in system state St at
time step t, defined as

Υ t = U t − U t+1. (24)

The first item denotes the average uncertainty over the search
area at time step t while the second item denotes the average
uncertainty over the search area at time step t + 1. The
difference between the two items denotes the uncertainty
reduction from state St to St+1 when actions At are taken.
To make the reward function easier to understand, we give the
following case as an example. Assume the average uncertainty
is 0.9 at time step t and 0.7 at time step t+1, then the reward
equals 0.9−0.7 = 0.2, which means the system gain by taking
action At in system state St at time step t is 0.2. Accordingly,
the optimization problem in (13) can be re-formulated as

maximize
{α,o}

Υ =
min{T ,E}−1∑

t=0

Υ t.

s.t. C1 ∼ C5 (25)

Proposition 1: The optimization problem (25) is equivalent
to optimization problem (13), such that the solutions for (13)
are obtained once (25) is solved.

Proof: According to the definition of Υ t in (24), we have

Υ =
min{T ,E }−1∑

t=0

Υ t

= Υ 0 + Υ 1 + . . . + Υ min{T ,E}−1

= (U0 − U1) + (U1 − U2) + . . .

+ (Umin{T ,E}−1 − Umin{T ,E})
= U0 − Umin{T ,E}

= U0 − U . (26)

Since U0 is a constant, to maximize Υ in problem (25)
is equivalent to minimize U in problem (13). Accordingly,
optimization problem (25) is equivalent to (13). Proposition 1
is proved.

To promote the trajectories of UAVs to meet the bound-
ary constraints, we introduce a penalty mechanism, where a
penalty will be produced if a UAV flies out of the search area.
We define a penalty function of position and orientation. For
an arbitrary UAV n, the penalty is defined as

Fn(xt
n, yt

n, ot
n) = ε× 1{S1 ∪S2 ∪S3 ∪S4}, (27)

where S1 �
{
xt

n = 0, ot
n ∈ {5, 6, 7}

}
, S2 �

{
xt

n =
Lx, ot

n ∈ {1, 2, 3}
}

, S3 �
{
yt

n = 0, ot
n ∈ {3, 4, 5}

}
, and

S4 �
{
yt

n = Ly, o
t
n ∈ {0, 1, 7}

}
denote the combination
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of positions and orientations that would break the boundary
constraints, ε is a penalty coefficient. Then the overall penalty
at time step t is expressed as

Ft =
∑
n∈N

Fn(xt
n, yt

n, ot
n). (28)

Accordingly, the actual reward obtained by action At at time
step t can be expressed as

Υ̂ t = Υ t − Ft. (29)

In a MDP model, the objective is to find the optimal policy
π∗ that maximizes the total discounted reward over time.
In other words, the immediate reward may be smaller, but
the optimal policy π∗ may lead to a higher profitable reward
from a long-term point of view [46]. As such, the considera-
tions we discussed above are automatically considered in an
MDP model. Accordingly, the optimal strategy indicating the
optimal task offloading decision-making and flying orientation
choosing actions, can be defined as

π∗ = arg max
π

Eπ,S

[ min{T ,E}−1∑
t=1

Υ̂ t

]
. (30)

V. DQN-BASED TASK OFFLOADING DECISION-MAKING

AND FLYING ORIENTATION CHOOSING STRATEGY

A. From Q-Learning to Deep Q-Network

In problem (30), the state space and action space grow
exponentially as the number of UAVs increases, making it hard
to find the optimal strategy π∗ in polynomial time [47]. It has
been proved that this kind of optimization problem involving
decision-making is NP-hard [48]. Moreover, the problem is
further complicated by the effect of current action on the future
reward.

Fortunately, the reinforcement learning is emerging as
a powerful method in handling the decision-making prob-
lem [49]. The agents in reinforcement learning can learn
series of actions to maximize the cumulative future reward
with corresponding policies over states [50]. For a state-action
pair (St,At), the expected long-term reward following current
strategy π can be expressed as a Q-value,

Qπ

(
St,At

)
= E

[ min{T ,E}−1−t∑
i=0

ηiΥ̂ t+i
∣∣∣(St,At

)]

= E

[
Υ̂ t + η1Υ̂ t+1 + . . .

∣∣∣(St,At
)]

= ESt+1

[
Υ̂ t + ηQπ

(
St+1,At+1

)∣∣∣(St,At
)]

,

(31)

where 0 < η < 1 is a discount factor indicating the impact
of future reward on current actions [51]. Then the expected
maximum reward can be expressed as

Qπ∗
(
St,At

)

= ESt+1

[
Υ̂ t + ηmax

At+1
Q
(
St+1,At+1

)∣∣∣(St,At
)]

. (32)

To approximate the long-term reward in (32), we adopt
a one-step temporal difference (TD) based Q-value updating
method. Based on Bellman operator, the Q-value updating
process is expressed as

Q
(
St,At

)
← Q

(
St,At

)
+ ϕ

[
Υ̂ t + ηmax

At+1
Q
(
St+1,At+1

)

−Q
(
St,At

)]
, (33)

where ϕ denotes the learning rate.
In the Q-learning process, a table containing discrete

state-action combinations and Q-values is utilized. However,
the states of the multi-UAV cooperative target search may be
continuous. Thus, the Q-learning approach cannot be directly
implemented in solving the MDP problem (30). To compensate
the limitation of Q-learning, we incorporate the deep learning
with the Q-learning method, which forms the Deep Q-Network
(DQN). Instead of a table, DQN uses a deep neural network
as a nonlinear approximator with the ability of capturing the
complex interactions among various states and actions. The
inputs and outputs of the deep neural network are states and
Q-values, respectively. The Q-value in (31) can be estimated
as Q(St,At) ≈ Q(St,At; θ), where θ denotes the parameters
of the DQN. Accordingly, the optimal action in state St is the
one with the maximum Q(St,At; θ), denoted by

At∗ = arg max
At

Q(St,At; θ). (34)

B. DQN Training

To train the DQN network, a mean-squared error (MSE)
based loss function is defined to minimize the difference
between estimated and target Q-values, expressed as

L(θt) = E

[(
Yt−Q

(
St,At; θt

))2
]
, (35)

where Yt = Υ̂ t + ηmax
At+1

Q
(
St+1,At+1; θt

)
is the target

Q-value and Q(St,At; θt) is the estimated Q-value, θt is the
parameters of DQN at time step t. Differentiating the loss
function with respect to the parameters, we get the gradient
as

∇θtL(θt) = E

[
2
(

Q
(
St,At; θt

)
− Yt

)
∇θtQ

(
St,At; θt

)]
.

(36)

Based on the gradient descent, θt is updated as

θt ← θt −�∇θtL(θt), (37)

where � denotes a step size coefficient, controlling the updat-
ing step size in each iteration.

In the learning process, we adopt an experience replay
technique to remove the correlations in the subsequent training
samples so as to improve learning efficiency. The learned
experience et = (St,At, Υ̂ t,St+1) at each time step is stored
in a replay memory [52]. Then, a batch of stored experience
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Fig. 3. DQN architecture for solving multi-UAV cooperative target search problem.

was randomly chose as samples to train the DQN. Moreover,
an ε-greedy method is adopted before performing experience
relay. With ε-greedy method, a random action is chosen with
probability ε to explore better actions, otherwise, the action
with maximum Q-value is chose from the replay memory.

To avoid a big correlation and oscillation between the
estimated and target Q-values when the same parameters are
used for Q-value calculation, a separate target Q-network is
introduced for target Q-value. Let θ̄t denote the parameters of
the target Q-network at time step t, the target Q-value can be
correspondingly expressed as

Ȳt = Υ̂ t + ηmax
At+1

Q
(
St+1,At+1; θ̄t

)
. (38)

Accordingly, Yt in formulas (35) and (36) is substituted by
Ȳt. θ̄t is only updated every ζ time steps based on θt. Fig. 3
shows the DQN architecture for solving the task offload-
ing decision-making and flying orientation choosing problem
in the multi-UAV cooperative target search scenario, where
MainNet and TargetNet refer to the neural networks used
to calculate the estimated and target Q-values, respectively.
Algorithm 1 shows the detailed process for training the DQN.
Note that the maximum time step can be denoted by tmax =
min{T , E } − 1 as formulated in (25).

The complexity of Algorithm 1 is mainly determined by
two neural networks and one activation layer. Assuming that
MainNet contained J fully connected layers and TargetNet
contains K fully connected layers. The time complexity can
be calculated as [53]

vactivationni +
J−1∑
j=0

nmain,jnmain,j+1

+
K−1∑
k=0

ntarget,kntarget,k+1

= O

(
J−1∑
j=0

nmain,jnmain,j+1 +
K−1∑
k=0

ntarget,kntarget,k+1

)
,

(39)

where ni means the unit number in the i-th layer, vactivation

means the corresponding parameters determined by the type
of the activation layer, nmain,j and ntarget,k denote the unit

number in the j-th DNN layer of MainNet and the k-th DNN
layer of TargetNet, nmain,0 and ntarget,0 equal the input size.
For a fully connected layer, there is a P ×Q matrix and a Q
bias vector. Hence, the memory of one fully connected layer
is (P + 1)Q. The space complexity of Algorithm 1 can be
accordingly calculated as [53]

J−1∑
j=0

(nmain,j + 1)nmain,j+1

+
K−1∑
k=0

(ntarget,k + 1)ntarget,k+1 +N (s) + Nbatch

= O

(
J−1∑
j=0

nmain,jnmain,j+1 +
K−1∑
k=0

ntarget,kntarget,k+1

)

+ O(N (s)) + O(Nbatch), (40)

where N (s) is the number of the variables in the state set,
Nbatch is the mini-batch size.

VI. PERFORMANCE EVALUATION

A. Experimental Setup

We consider a 200 m × 200 m search area, which is further
discretized and rasterized into 10×10 cells. One GBS equipped
with a powerful edge server is deployed in the center of the
search area. Once a search task is offloaded to the GBS,
the target detection result can be obtained immediately due
to the powerful computation capability of the equipped edge
server. In this regard, the configuration of the edge server is
ignored for simplicity. Two UAVs take off at two corners of
the search area, with the cell positions of [0,0] and [9,9].
Other parameters setting of UAVs is listed in Table I. For the
DQN, PyTorch [54] is used to establish the neural network.
The software environment we utilize is PyTorch 1.8.0 and
CUDA 11.1 with Python 3.9 on Windows 10. The GPU is
NVIDIA GeForce RTX 3060 with 16GB memory. The CPU
is Intel(R) Core(TM) i9-10850K with 32GB memory. Both
the main and target Q-networks use a fully connected deep
neural network with two hidden layers. The ReLU function
is adopted as the activation function for hidden layers with
128 nodes. The learning rate and discount factor are set to
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Algorithm 1 DQN-Based Task Offloading Decision-Making
and Flying Orientation Choosing Strategy
1: Initialize replay memory
2: Initialize DQN with random parameters θ
3: Initialize target DQN with parameters θ̄ = θ
4: for episode e = 1, . . . , emax do
5: Observe the initial state S1;
6: for time step t = 1, . . . , tmax do
7: Choose a random probability p;
8: if p ≤ ε then
9: Select a random action At,

10: else
11: Choose action At = arg max

At
Q(St,At; θt);

12: end if
13: Execute action At, calculate Υ̂ t and derive the next

state St+1 according to formulas (16)-(20);
14: Store the experience (St,At, Υ̂ t,St+1) in the replay

memory;
15: Get random mini-batch of samples (Si,Ai, Υ̂ i,Si+1)

from the replay memory;
16: Calculate the target Q-value from the target DQN,

Ȳi = Υ̂ i + ηmax
Ai+1

Q(Si,Ai; θ̄t);

17: Perform the gradient descent step on L(θi) =
E[(Ȳi−Q(Si,Ai; θt))2] with respect to θt, and update
θt;

18: Every ζ time steps, update θ̄t with θt;
19: end for
20: end for

TABLE I

PARAMETERS SETTING OF UAVS

0.001 and 0.95, respectively. The penalty coefficient is set
to 0.05. The maximum episodes emax is set to 1000. The
parameter updating frequency for target Q-network is set to
100. The main parameters setting of DQN is listed in Table II.

B. Simulation Results

1) Effectiveness: We mainly consider the following four
strategies:

TABLE II

PARAMETERS SETTING OF DQN

• Our proposal, that is, the proposed task offloading
decision-making and flying orientation choosing strategy
aiming at minimizing the uncertainty of search area, and
it is solved by DQN with separated target Q-network
(recorded as our proposal);

• The proposed task offloading decision-making and flying
orientation choosing strategy aiming at minimizing the
uncertainty of search area, and it is solved by DQN
without separated target Q-network (recorded as DQN
without separate target Q-network).

• DDQN, that is, the proposed task offloading
decision-making and flying orientation choosing
strategy solved by Double DQN (DDQN) method [56].
DDQN has the same architecture with DQN but a more
complicated target function than DQN.

• DDPG, that is, the proposed task offloading
decision-making and flying orientation choosing
strategy solved by Deep Deterministic Policy Gradient
(DDPG) method [57]. Compared with DQN, DDPG has
a actor-critic based architecture and has two additional
neural networks, i.e., policy network and policy target
network.

In this set of simulations, the initial energy of each UAV is
set to 1×104 Joule, the mass and pre-set flying speed of each
UAV is set to 1 kg and 5 m/s, respectively. The maximal area
search time is set to 360 s, and the target detection accuracy is
set to 0.4. Fig. 4 shows the changes in average uncertainty with
increasing training episodes. It is obviously that the average
uncertainty of our proposal, DDQN, and DDPG gradually
stabilized at the optimal value in about 350 episodes of train-
ing, indicating the agent in our proposal, DDQN, and DDPG
has learned the optimal task offloading decision-making and
flying orientation choosing strategy to maximize the long-term
reward and thus to minimize the average uncertainty. However,
the scheme DQN without separate target Q-network requires
longer episodes (approximately 600) to stabilize the average
uncertainty. The average uncertainty is prone to relatively
fluctuations and oscillations. This is because a big correlation
between the estimated and target Q-values exists in the DQN
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Fig. 4. Episode average uncertainty achieved during training.

Fig. 5. Comparison of average time overhead with different schemes.

without separate target Q-network, and the estimated Q-values
shift but also the target Q-values shift when the same para-
meters are used during the training process. The design of a
separated Q-network in our proposal avoids these problems.
Moreover, our proposal, DDQN, and DDPG have nearly the
same average uncertainty performance during training. To bet-
ter illustrate the performance of the four schemes. We show in
Fig. 5 the comparison of average time overhead under different
schemes. It can be seen that under different number of UAVs,
our proposal and DQN without separate target Q-network have
nearly the same average time overhead and outperform DDQN
and DDPG. This is because in DDQN, the target Q-value is
calculated by Ȳt = Υ̂ t +ηQ(St+1, argmax

a
Q(St+1, a; θt), θ̄t),

which is more complicated than (38). For the DDPG archi-
tecture, two additional neural networks including primary net-
work and primary target network are needed, thus resulting in
more time overhead during training. Combining Fig. 4 Fig. 5,
it is not hard to conclude that our proposal outperforms the
benchmarks. Accordingly, in the following, we will adopt the
DQN based deep reinforcement learning method to conduct
more simulation to validate how other factors influence the
system performance.

2) Average Uncertainty: We consider the following
schemes as benchmarks:

• Local-Comp-Only (LCO), where all UAVs compute their
computation tasks locally;

• Offload-Comp-Only (OCO), where all UAVs offload their
computation tasks to GBSs;

• Random-Offload (RO), where each UAV chooses local
computing or offloading randomly;

• Random-Trajectory (RT), where each UAV chooses its
flying orientation randomly;

• Non-Coop-Search (NCS), where UAVs search the target
area in a non-cooperative manner.

It is noteworthy that all UAVs in the LCO, OCO, RO, and
RT share a common uncertainty map by communications in
a cooperative manner, while each UAV in the NCS maintains
a private uncertainty map without sharing it with other UAVs
in a non-cooperative manner.

2.1) Effect of Target Detection Accuracy on Search
Performance: According to (12), the target detection accuracy
is critical to the reduction of the average uncertainty. To reveal
the effect of target detection accuracy on search perfor-
mance, let the target detection accuracy vary from 0.2 to 0.8,
Fig. 6 is obtained. Especially, Fig. 6(a) illustrates the perfor-
mance comparison between our proposal and four cooperative
schemes, i.e., LCO, OCO, RO, and RT. Fig. 9(b) illustrates
the performance comparison between our proposal and the
non-cooperative scheme NCS. It is obviously from Fig. 9(a)
that the average uncertainty of the search area decreases with
the increasing target detection accuracy. Because the higher
the target detection accuracy, the easier it is to identify the
search area, thus leading to a lower uncertainty, which is
also consistent with (12). Moreover, the average uncertainty
of our proposal is lower than that of LCO, OCO, RO, and
RT, which can reduce up to 68%, 52%, 64%, and 77%
average uncertainty over the four schemes, respectively. This
is because the UAVs in our proposal jointly make the optimal
task offloading decisions and the optimal flying orientation
choices learned by the agent in the DQN network for energy
saving. However, more computing energy, transmission energy,
or kinetic energy will be consumed in the LCO, OCO, RO,
and RT schemes. Thus less area would be searched, leading
to a higher uncertainty. Also, it can be seen from Fig. 9(a)
that choosing offloading tasks to GBS is more beneficial to
uncertainty reduction than local computing, which indicates
that the offloading operation would consume less energy than
local computing in most cases under this simulation scenario.

Also, the performance comparison between our proposal
and NCS is shown in Fig. 6(b). In NCS, each UAV trains
its DQN without the uncertainty map from other UAVs. The
average uncertainty of NCS is obtained by averaging all UAVs’
uncertainty map values when all UAVs finished their search
tasks. It can be seen the search performance of our proposal
is better than that of NCS, and can reduce up to 70% average
uncertainty over NCS. This is because, during the search
process, the UAVs in the NCS do not share their uncertainty
maps, leading to a repeated search of a cell that has been
already searched by other UAVs, ignoring these cells with a
higher uncertainty. However, according to (20), a UAV should
choose to fly to a cell with the highest uncertainty to reduce
the uncertainty the most. Therefore, our proposal considering
the uncertainty map sharing outperforms the NCS. Especially,
when the target cells are searched repeatedly by UAVs, the
superiority of our proposal over the non-cooperative scheme
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Fig. 6. Average uncertainty of search area under different accuracy of target detection.

is more prominent. To verify this point, we will further show
the performance gap between our proposal and NCS under
different UAV’s initial energy in the later simulations.

2.2) Effect of UAV’s Initial Energy on Search Perfor-
mance: Let the UAV’s initial energy vary from 1× 104 Joule
to 6 × 104 Joule while δ = 0.6 and Θ = 600 s, Fig. 7
is obtained. For the comparison with cooperative schemes,
Fig. 7(a) shows that the average uncertainty of all five schemes
decreases with the increasing UAV’s initial energy. This is
because a UAV with more energy can fly to more cells to
execute search tasks, leading to a reduction in uncertainty.
The right Y-axis of Fig. 7 exactly shows that the average
searching steps per UAV (which indicates the average number
of cells searched by each UAV) increases with the increasing
UAV’s initial energy. Obviously, our proposal achieves the best
search performance among the five cooperative schemes. It is
noteworthy that the search performance of our proposal, LCO,
OCO, and RO tends to be the same when UAV’s initial energy
gradually increases to 4 × 104 Joule. This is because when
UAV’s initial energy is small, energy instead of maximal area
search time is the main factor limiting the search performance.
Our proposal can jointly make the optimal task offloading
decisions and the optimal flying orientation choices learned
by the agent in the DQN network for energy saving and
thus to search more cells for a better search performance.
When UAV’s initial energy increases, maximal area search
time instead of energy is the main factor limiting a long-time
area search process. The UAVs in all five schemes have nearly
the same searching steps related to the maximal area search
time. Considering the optimal flying orientation choosing,
our proposal, LCO, OCO, and RO can obtain the same and
optimal average uncertainty. However, for the RT scheme,
although it has the same searching steps when UAV’s initial
energy gradually increases to 4 × 104 Joule, it has the worst
search performance. This is because in RT, UAVs randomly
choose flying orientations without considering the uncertainty
minimization, leading to repeated searches on cells with low
uncertainty and rare searches on cells with high uncertainty.

Also, Fig. 7(b) shows the comparison with the
non-cooperative scheme NCS. It is obvious that the average

uncertainty of both our proposal and NCS decreases with
the increasing UAV’s initial energy. The average uncertainty
of our proposal is much better than NCS even though they
have the same average searching steps. It is noteworthy
that the average uncertainty performance gap between our
proposal and NCS becomes bigger when UAV’s initial energy
increases, as circled blue in Fig. 7(b). This is because when
UAV’s initial energy is small, the number of target cells a
UAV can search is also small, resulting in a small probability
that target cells are searched repeatedly by multiple UAVs.
With the increase of energy, UAVs can search for more target
cells. UAVs in our proposal would fly to a cell that has
the highest uncertainty to reduce the uncertainty the most
through the shared uncertainty map. However, the UAVs in
the NCS may search the cells that have been already searched
by other UAVs repeatedly, ignoring these cells with higher
uncertainties.

2.3) Effect of Maximal Area Search Time on Search
Performance: UAV’s initial energy has a great effect on search
performance, so does the maximal area search time. To verify
this point, let the maximal area search time vary from 360 s
to 600 s (i.e., 6 ∼ 10 min) while Φt=0

n = 1×104 Joule, Fig. 8
is obtained. Obviously, the average uncertainty increases with
the increasing maximal area search time for all six schemes.
Our proposal, LCO, OCO, and RO have the same search
performance. This is because the UAVs in LCO, OCO and RO
can choose the optimal flying orientations as our proposal do.
The task offloading decision-making has little effect on search
performance when UAV’s initial energy is abundant. In this
case, maximal area search time is the main factor limiting
the search performance. However, the average uncertainty
of RT and NCS are much higher than our proposal, LCO,
OCO, and RO due to the random flying orientation choosing
and the respective search without uncertainty map sharing,
as discussed in the previous subsection.

2.4) Joint Effect of UAV’s Initial Energy and Maximal
Area Search Time on Search Performance: As discussed
above, both UAV’s initial energy and maximal area search
time have a significant effect on the duration of area search
process and thus influence the search performance. How to set
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Fig. 7. Average uncertainty under different UAV’s initial energy.

Fig. 8. Average uncertainty under different maximal area search time.

UAV’s initial energy and maximal area search time is critical to
achieve a better search performance. To explore this, let UAV’s
initial energy vary from 1×104 Joule to 6×104 Joule and the
maximal area search time vary from 6 min to 10 min, Fig. 9
is obtained. In general, the average uncertainty decreases first
and then tends to be stable for all five different area search
time settings. This is because the maximal area search time
would gradually becomes the main factor limiting the search
performance with the increasing UAV’s initial energy.

Let’s look at Fig. 9 along the Y-axis. Obviously, for a certain
UAV’s initial energy, the average uncertainty decreases with
the increasing maximal area search time. This is because a
longer area search time allows that more cells with higher
uncertainties can be searched by UAVs, leading to a great
improvement of search performance. Especially, when UAV’s
initial energy is small, increasing the maximal area search
time can not significantly improve the search performance.
As shown in red circle when UAV’s initial energy Φt=0

n =
1×104 Joule, the average uncertainty decreases first and then
tends to be the same as maximal area search time increases.
This indicates that UAVs end the search process ahead of the
maximal area search time due to the lack of energy. More
importantly, when the maximal area search time increases from
6 min to 10 min, the search performance increases more and

Fig. 9. Search performance under different UAV’s initial energy and maximal
area search time.

more slowly, as the part circled blue in Fig. 9. The interesting
finding indicates that once a good search performance is
obtained, extending search time would not lead to a significant
performance gain.

2.5) Effect of UAV’s Speed on Search Performance: Let the
UAV’s speed vary from 5 m/s to 10 m/s, Fig. 10 is obtained.
It can be seen that the average uncertainty decreases first
and then increases as UAV’s speed increases. Our proposal
outperforms LCO, OCO, RO, RT, and NCS, which can reduce
up to 28%, 17%, 26%, 38%, and 23% average uncertainty
over the five schemes. It is noteworthy that too small or too
high a UAV’s speed would deteriorate the search performance,
as shown in Fig. 10. This is because when UAV’s speed
is small, although the kinetic energy consumption is small
according to (1), the flying duration from one cell to another
is long. This results in that less cells are searched by UAVs
before the maximal area search time expires, leading to a high
average uncertainty. Conversely, when UAV’s speed is high,
the flying duration from one cell to another is short. Theoreti-
cally speaking, more cells can be searched before the maximal
area search time. However, more kinetic energy would be
also consumed according to (1), the remaining energy can not
enable UAVs to search more cells as expected. As a result,
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Fig. 10. Average uncertainty under different UAV’s speed.

Fig. 11. Average uncertainty under different UAV’s processing capability.

the search performance deteriorates. This interesting findings
can guide UAVs to choose a proper flying speed to obtain a
better search performance.

2.6) Effect of Processing Capability on Search Per-
formance: We vary UAV’s processing capability from 1 ×
109 cycles/s to 2.5 × 109 cycles/s, Fig. 11 shows that the
average uncertainty of our proposal, OCO, RO, RT, and NCS
increases with the increasing UAV’s processing capability
while that of OCO keeps unchanged. This is because more
local computing energy will be consumed when f l

n increases
based on (7). Especially, the average uncertainty of LCO is
most affected by changes in UAV’s processing capability. This
is because local computing is the only task processing choice
for LCO, and more energy will be consumed in task processing
instead of flying to more cells as UAV’s processing capability
increases, leading to a rapid search performance deterioration.

2.7) Effect of Bandwidth on Search Performance: Let
the bandwidth of each wireless communication channel vary
from 0.1 MHz to 0.25 MHz, Fig. 12 shows that the average
uncertainty of our proposal, OCO, RO, RT, and NCS decreases
with the increasing bandwidth while that of LCO keeps
unchanged. This is because there is no offloading process
in LCO and the search performance has nothing to do with
bandwidth. According to (11), less transmission energy would
be consumed when increasing the bandwidth in our proposal,
OCO, RO, RT and NCS. More energy can be used to explore
more cells for uncertainty reduction. Especially, the average
uncertainty of OCO is most affected by changes in bandwidth.

Fig. 12. Average uncertainty under different bandwidth.

When increasing bandwidth from 0.1 MHz to 0.25 MHz, the
search performance of our proposal, LCO, OCO, RO, RT,
and NCS can be improved by 12%, 0%, 26%, 7%, 8%, and
8%, respectively. For all bandwidth settings, our proposal can
outperforms other five schemes.

2.8) Effect of Number of RSUs on Search Performance:
To show the search performance of the proposed algorithm
with different number of UAVs, we vary the number of
UAVs from 1 to 5. Specifically, when N = 1, a corner
of the search area is randomly chosen as a take-off cell;
when N = 2, two corners of the search area are randomly
chosen as take-off cells; when N = 3, three corners of the
search area are randomly chosen as take-off points; when
N = 4, four UAVs take off at the four corners of the
search area respectively; when N = 5, one corner of the
search area is randomly chosen as the take-off cell for two
UAVs. As shown in Fig. 13(a), the search performance is
improved when more UAVs participate in the search process.
Our proposal outperforms the cooperative benchmarks for
different number of UAVs. Also, the performance comparison
between our proposal and NCS is shown in Fig. 13(b). At first,
the average uncertainty is the same when N = 1. As the
number of UAVs increases, the performance gap between
our proposal and NCS becomes bigger, which indicates the
superiority of our proposal over non-cooperative scheme. This
is This is because more UAVs in our proposal would fly
to cells with higher uncertainty to reduce the uncertainty
through the shared uncertainty map. More importantly, when
the number of UAVs continue to increases, no big performance
gain will be achieved by increasing the number of UAVs.
This interesting finding indicates that once a good average
uncertainty performance requirement is met, the increase of the
number of UAVs would not lead to a significant performance
gain but a waste of resources.

3) Search Efficiency and Offloading Proportion: To further
verify the search performance of our proposal, we conduct
simulations to show more details during searching process
in terms of the optimal flying orientation choosing and task
offloading decision-making. Here, we define search efficiency
as the uniformity of searching process. As discussed above,
UAVs should try to search more cells instead of just searching
several cells repeatedly to minimize the uncertainty. Conse-
quently, a good search result is the uncertainty of all cells
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Fig. 13. Search performance under different number of UAVs.

Fig. 14. Comparison of search efficiency. The standard variance of all cells’
uncertainty values is used to represent the search efficiency. The lower the
variance, the more efficient the search process.

should be about the same value. In this regard, we define the
search efficiency as the standard variance of all cells’ uncer-
tainties. The lower the standard variance, the more efficient
the search process.

Fig. 14 shows the search performance when UAV’s initial
energy varies from 1 × 104 Joule to 6 × 104 Joule while
δ = 0.6 and Θ = 600 s. For all UAV’s initial energy
settings, our proposal has the lowest standard variance of
uncertainty, indicating the best search efficiency is obtained
by our proposal among six schemes. Moreover, RT has the

Fig. 15. Comparison of offloading proportion.

highest standard variance of uncertainty, indicating that UAVs
in RT failed to search more cells. This also further verify
the effectiveness of our proposal in minimize the uncertainty
by optimally choosing flying orientations. Fig. 15 shows the
offloading proportion when UAV’s processing capability varies
from 1 × 109 cycles/s to 2.5 × 109 cycles/s. Specifically, the
offloading proportions of LCO and OCO are 0% and 100%,
respectively. The proportion of our proposal increases with the
increasing UAV’s processing capability. This is because more
energy would be consumed if tasks are processed by UAVs
locally when UAV’s processing capability is strong. In this
case, offloading is the best choice. The agent in our proposal
has learned that offloading can lead to less energy consumption
and thus to minimize the uncertainty. Moreover, the offloading
proportion of RT and NCS is nearly the same as our proposal.
This is because the optimal task offloading decision-making
is also considered in RT and NCS.

VII. CONCLUSION

Considering the imperfect search of UAVs, this paper
investigates the edge computing enable multi-UAV cooperative
target search problem. We first formulate the search process
as an uncertainty minimization problem under energy and area
search delay constraints. By introducing a reward function,
we prove that the original problem is equivalent to a reward
maximization problem. Then the interaction between different
actions and rewards is analyzed by the MDP. A DRL frame-
work is developed to efficiently optimize the task offloading
decision-making and flying orientation choosing for minimiz-
ing the uncertainty over search area. Extensive simulation
results validate the proposed techniques and comparison with
benchmarks is also presented. Our evaluation also shows how
different parameters affect the search performance, which
could guide the deployment and configuration of UAVs for
practical search tasks. In our future work, we will consider
a more practical scenario where the movement of UAVs can
be more precisely descripted by the azimuth, pitch angle and
velocity in continuous space.
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