
IEEE INTERNET OF THINGS JOURNAL, VOL. 7, NO. 10, OCTOBER 2020 9637

Collaborative Data Scheduling for Vehicular Edge
Computing via Deep Reinforcement Learning

Quyuan Luo , Changle Li , Senior Member, IEEE, Tom H. Luan , Senior Member, IEEE,

and Weisong Shi , Fellow, IEEE

Abstract—With the development of autonomous driving, the
surging demand for data communications as well as computa-
tion offloading from connected and automated vehicles can be
expected in the foreseeable future. With the limited capacity of
both communication and computing, how to efficiently schedule
the usage of resources in the network toward best utilization rep-
resents a fundamental research issue. In this article, we address
the issue by jointly considering the communication and computa-
tion resources for data scheduling. Specifically, we investigate on
the vehicular edge computing (VEC) in which edge computing-
enabled roadside unit (RSU) is deployed along the road to
provide data bandwidth and computation offloading to vehi-
cles. In addition, vehicles can collaborate among each other with
data relays and collaborative computing via vehicle-to-vehicle
(V2V) communications. A unified framework with communica-
tion, computation, caching, and collaborative computing is then
formulated, and a collaborative data scheduling scheme to min-
imize the system-wide data processing cost with ensured delay
constraints of applications is developed. To derive the optimal
strategy for data scheduling, we further model the data schedul-
ing as a deep reinforcement learning problem which is solved by
an enhanced deep Q-network (DQN) algorithm with a separate
target Q-network. Using extensive simulations, we validate the
effectiveness of the proposal.

Index Terms—Data scheduling, deep Q-network (DQN), deep
reinforcement learning (DRL), vehicular edge computing (VEC).

I. INTRODUCTION

IN RECENT years, there are increasing interest in connected
and automated vehicles, which integrate information and

communication technologies and play a crucial role toward a
safer and more intelligent transportation system [1]. However,
the increasing number of connected and automated vehicles
and their resource-hungry applications pose great challenges

Manuscript received December 15, 2019; revised February 26, 2020;
accepted March 13, 2020. Date of publication March 26, 2020; date of current
version October 9, 2020. This work was supported in part by the National
Natural Science Foundation of China under Grant U1801266, in part by
the National Key Research and Development Program of China under Grant
2019YFB1600100, in part by the Key Research and Development Program
of Shaanxi under Grant 2018ZDXM-GY-038 and Grant 2018ZDCXL-GY-
04-02, in part by the Youth Innovation Team of Shaanxi Universities,
in part by the Science and Technology Projects of Xi’an, China, under
Grant 201809170CX11JC12, and in part by the China Scholarship Council.
(Corresponding author: Changle Li.)

Quyuan Luo and Changle Li are with the State Key Laboratory of
Integrated Services Networks, Xidian University, Xi’an 710071, China
(e-mail: qyluo@stu.xidian.edu.cn; clli@mail.xidian.edu.cn).

Tom H. Luan is with the School of Cyber Engineering, Xidian University,
Xi’an 710071, China (e-mail: tom.luan@xidian.edu.cn).

Weisong Shi is with the Department of Computer Science, Wayne State
University, Detroit, MI 48202 USA (e-mail: weisong@wayne.edu).

Digital Object Identifier 10.1109/JIOT.2020.2983660

to the limited capability of vehicles in terms of data com-
puting capacity for providing real time and reliable vehicular
services [2]. The paradigm of vehicular edge computing (VEC)
has been come up accordingly to strengthen the service capa-
bility through moving computation nodes to the proximity of
vehicles [3].

In a VEC network, edge computational nodes (ECNs) can
be deployed in cell towers, roadside units (RSUs), and within
connected and automated vehicles. Although offloading data
to ECNs can significantly improve the delay performance, it
also increases the burden of radio spectrum resource when
data are transmitted through radio access networks [4], [5].
The sharp increase in the demand for communication during
data offloading imposes great challenges for the existing com-
munication resources of the VEC network [6]. Accordingly, it
is vital to jointly consider the communication and computation
resources for data scheduling to alleviate the situation.

Some existing works have focused on the joint alloca-
tion of communication and computation resources [7]–[10].
In these work, the data scheduling is mostly formulated
as a resource scheduling problem through either minimiz-
ing the total delay or cost, or maximizing the system
utility. Marvelous solutions are proposed to solve these
optimization problems. However, the dynamic and changing
VEC environment make the resource allocation a nonconvex
optimization problem with the complicated objection func-
tion and constraints, which are much complicated and difficult
to solve [11]. Good at abstracting many factors that affect
the VEC environment to a mapping problem and learning
optimal resource allocation strategy from the environment,
deep reinforcement learning (DRL) is becoming a research
hotspot to solve the resource allocation problem [12], [13].
Tan and Hu [14] proposed a DRL-based joint communica-
tion, caching, and computing allocation scheme in vehicle
networks. He et al. [15] proposed a dueling-DQN (DDQN)-
based approach to solve their formulated joint optimization
problem of networking, caching, and computing resources for
connected vehicles. More recently, Zhang et al. [16] proposed
a deep Q-network (DQN)-empowered task offloading for MEC
in urban informatics.

However, most of the existing works consider offloading
data to RSU or cell towers, ignoring the idle computing capac-
ity of collaborative vehicles. Since vehicles themselves can be
regarded as ECNs, they can assist data processing for other
vehicles if they have some idle computing resources, which
will greatly reduce the data processing cost and burden of

2327-4662 c© 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: XIDIAN UNIVERSITY. Downloaded on November 30,2020 at 06:26:20 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-2948-3491
https://orcid.org/0000-0003-2568-8908
https://orcid.org/0000-0002-5215-7443
https://orcid.org/0000-0001-5864-4675

9638 IEEE INTERNET OF THINGS JOURNAL, VOL. 7, NO. 10, OCTOBER 2020

RSUs or cell towers. In light of the existing works, in this
article, we make a further step in designing, analyzing, and
optimizing data scheduling through jointly consider commu-
nication, computation, caching, and collaborative computing a
unified framework. Inspired by the DRL, we further propose
a collaborative data scheduling scheme for the VEC network
based on DQN, to minimize data processing cost while ensur-
ing delay constraints. Specifically, the contributions of this
article can be summarized as follows.

1) Model: We model the data scheduling model in a uni-
fied VEC network, where data can be processed locally,
offloaded to RSUs, migrated to collaborative vehicles,
or kept in caching queues. Considering the remaining
lifetime and caching state of data, we establish a multi-
queue model for data caching on both the vehicle side
and RSU side.

2) Algorithm Design: To derive the optimal data schedul-
ing strategy, we first formulate an optimization problem
to minimize the system-wide data processing cost while
ensuring delay constraints. Then, the data scheduling is
modeled as a DRL problem to reflect the interaction
between data scheduling and cost, by jointly consid-
ering communication resource, caching states of data,
computing resource, delay requirements of data, and the
mobility of vehicles.

3) Validation: Based on the real-world vehicular trace, the
proposed scheme is evaluated by extensive simulations.
The simulation results validate the performance of our
proposal and show that our proposal efficiently reduces
data processing cost and helps data be processed under
delay constraints.

The remainder of this article is organized as follows. The
related work is presented in Section II. In Section III, we
depict the system model and establish a multiqueue model
for data caching on dual sides. The data scheduling problem
is formulated in Section IV. The DQN-based scheduling
scheme is introduced in Section V. In Section VI, exten-
sive simulation results are discussed. The conclusion is drawn
in Section VII.

II. RELATED WORK

In this section, we survey the existing literature on joint
resource allocation of communication and computation for
data scheduling in the VEC system.

Du et al. [19] proposed an online DDORV algorithm,
which utilizes the Lyapunov optimization theory to minimize
the averaged cost of MEC-enabled roadside units (MRSUs)
and vehicular terminal. Through derivation and comparing
the values of local processing cost and task offloading cost,
the optimization problem on the vehicular terminal side is
solved. For the optimization issue on the MEC server side,
the Lagrangian dual decomposition and continuous relaxation
method are adopted. Zhang et al. [17] proposed a cloud-based
MEC offloading framework in vehicular networks, where both
the heterogeneous requirements of the mobility of the vehi-
cles and the computation tasks are considered. Based on the
analysis of the characteristics of various offloading strategies,

the authors further propose a predictive-mode transmission
scheme for task-file uploading. Moreover, Zhang et al. [8]
adopted a Stackelberg game theory approach to design an
optimal multilevel offloading scheme, which maximizes the
utilities of both the vehicles and the computing servers.

Most of the existing MEC-based resource allocation and
optimization problems are mixed-integer nonlinear program-
ming (MINLP) problems and they are also NP-hard prob-
lems, which are not computable in polynomial time with
existing general time with existing general solvers [18].
Generally speaking, the complex optimization problem
can be decomposed into subproblems, and by solving
the subproblems, respectively, the near-optimal solution is
derived [7]–[9], [19], [20].

In order to efficiently solve the resource allocation
optimization problem, some other methods, such as game
theory, heuristic intelligent algorithm, and DRL, are also
becoming the research focuses. Messous et al. [21] consid-
ered the problem of computation offloading while achieving
a tradeoff between execution time and energy consumption
in an unmanned aerial vehicle (UAV) network, where the
combination of energy overhead and delay is minimized by
the designed game theory model. Dinh et al. [22] formu-
lated a distributed computation offloading problem among
the mobile users as an exact potential game and proposed a
distributed offloading scheme based on Q-learning and bet-
ter response with inertia and prove the Nash equilibrium
convergence.

As to DRL-based approach, Zhang et al. [2] adopted a
deep Q-learning approach for designing an optimal data trans-
mission scheduling scheme in cognitive vehicular networks
to minimize transmission costs while also fully utilizing
various communication modes and resources. In [16], they
also design an optimal offloading scheme with joint MEC
server selection and transmission mode determination in a
deep Q-learning approach to maximize task offloading util-
ity. Tan and Hu [14] developed a framework of joint optimal
resource allocation of communication, caching, and comput-
ing for vehicular networks and proposed a DRL approach
to solve this resource allocation problem. He et al. [15]
proposed an integrated framework that can enable dynamic
orchestration of networking, caching, and computing resources
for connected vehicles and formulated the resource allocation
strategy as a joint optimization problem. To derive the optimal
strategy, they proposed a DDQN-based approach to solve
the problem.

All those works above are marvelous solutions. Most exist-
ing relevant works focus on how to allocate resource of
networking, caching, and computing for better data scheduling
and processing. The data are generally offloaded to RSUs or
cell towers to compute. Few works focus on the collaborative
computing on the vehicle side. This article takes the research a
step further by fully utilizing the idle computing resources of
collaborative vehicles, formulating a unified framework with
communication, computation, caching, and collaborative com-
puting, and developing a collaborative data scheduling scheme
to minimize the system-wide data processing cost with ensured
delay constraints of applications.

Authorized licensed use limited to: XIDIAN UNIVERSITY. Downloaded on November 30,2020 at 06:26:20 UTC from IEEE Xplore. Restrictions apply.

LUO et al.: COLLABORATIVE DATA SCHEDULING FOR VEC VIA DRL 9639

Fig. 1. Unified framework with communication, computation, caching, and collaborative computing in the VEC network.

III. SYSTEM MODEL

This section presents the system model, including the uni-
fied framework with communication, computation, caching,
and collaborative computing; and the multiqueue model for
data caching on dual sides. For convenience, the main nota-
tions used are summarized in Table I.

A. Unified Framework With Communication, Computation,
Caching, and Collaborative Computing in the VEC Network

Fig. 1 shows the unified framework with communication,
computation, caching, and collaborative computing in the VEC
network. The road is divided into K segments, denoted by K =
{1, 2, . . . , K}, and each covered by an RSU with an ECN. The
coverage radius of these RSUs is denoted by {R1, R2, . . . , RK},
respectively. Vehicles can establish the communication link
with both RSU and vehicles through the assigned orthogonal
licensed channels, each with a bandwidth of B. The licensed
bandwidth is classified into two categories, one is for vehicle-to-
infrastructure (V2I) communication, and the other for vehicle-
to-vehicle (V2V) communication. The number of the licensed
channel for V2I and V2V communications is denoted by CV2I
and CV2V, respectively. RSUs also provide powerful computing
capacity due to the deployed ECN.

In a VEC scenario, various data would be generated from
onboard applications both for safety (e.g., high-definition cam-
era and LiDAR) and entertainment (e.g., augmented reality
and face recognition) purposes [23], [24]. These applications
generally utilize the deep learning method to process data,
which need powerful computational capacity [25]. In order to
better describe the data generating, transmitting and computing
processes, we divide time into time slots, each with a length
of �t. Since �t is short, we consider the system to be qua-
sistatic so that the wireless channels and the topology of the
system keep unchanged at each time slot and vary at different
time slots [19]. Data would be generated at the beginning of
each time slot.

TABLE I
MAJOR NOTATIONS

Due to the limited computing capacity of the onboard device,
severe delay would be caused for processing computation-
intensive data. Thanks to the licensed channel resources, some
latency-sensitive and computation-intensive data of vehicles
could be offloaded to RSUs or migrated to collaborative vehicles
that have idle computation resources. The control center in each
road segment schedules vehicular communications through a
dedicated control channel. Besides, the control center plays a
role in gathering the states of vehicles through pilot signals.

Authorized licensed use limited to: XIDIAN UNIVERSITY. Downloaded on November 30,2020 at 06:26:20 UTC from IEEE Xplore. Restrictions apply.

9640 IEEE INTERNET OF THINGS JOURNAL, VOL. 7, NO. 10, OCTOBER 2020

(a)

(b)

Fig. 2. Multiqueue model for caching data on dual sides. (a) Multiqueue model for data caching on vehicle side. According to the queue index, there are
two cases, i.e., when 1 ≤ l < L and when l = L. For 1 ≤ l < L, the input data come from three sources. For l = L, the input data only come from one source.
(b) Multiqueue model for data caching on RSU side.

The size of the pilot signal can be set to arbitrarily small.
Thus, the extra overhead can be very small [26]. Since the
processing result is usually very tiny, we neglect the output
return process and just focus on transmitting data to RSUs or
collaborative vehicles [19]. We categorize data into M types
and use two items {Di, Ti} to describe an arbitrary type of data
i (i ∈M = {1, 2, . . . , M}), where Di stands for the amount of
data, and Ti stands for the data delay constraint. In addition, we
use c to represent the processing density (in CPU cycles/bit)
of the data. It is noteworthy that the unit of delay constraint is
time slot, which means once the data are generated, it needs
to be processed within the time duration of �t × Ti. At each
time slot, type-i data are generated with the probability of �i,
which meets �M

i=i�i ≤ 1. The generated data can be processed
locally, or offloaded to an RSU or migrated to a collaborative
vehicle to be processed. For some delay-tolerant data, it may
give way to the delay-sensitive data in the vehicular caching
for priority processing. In order to better illustrate it, we model
the data caching on both the vehicle side and RSU side as a
multiqueue system in the following.

B. Multiqueue Model for Data Caching on Dual Sides

For the data caching on both the vehicle side and RSU side,
we use L to denote the number of caching queues indexed as

{1, 2, . . . , L}, respectively. According to the delay constraints
of generated data, we have L = max{Ti, i ∈M}. In each queue,
the remaining lifetime of data under its delay constraint is the
same. Since the caching queue’s input and output of vehicles
and RSUs are different, we analyze them, respectively, in the
following.

1) Vehicle Side: On the vehicle side as shown in Fig. 2(a),
we divide the queue into two categories according to the queue
index l, i.e., 1 ≤ l < L and l = L. Assume the index of time
slot now is t, for the case when 1 ≤ l < L, the input data in
caching queue l in a given vehicle V1 come from three sources.

1) The data in l + 1 of V1 and has not been processed at
time slot t−1. As time slot increases from t−1 to t, the
remaining lifetime for data processing decreases by 1.

2) The data generated by vehicle V1 itself at time slot t
with data delay constraint l.

3) Another vehicle V2 transmitted data with queue index
l+ 1 to V1 at time slot t − 1.

The data in queue l of vehicle V1 when 1 ≤ l < L has four
different outputs.

1) Be offloaded to RSU k and then cached in queue l− 1
of RSU k at next time slot t + 1.

2) Be migrated to another vehicle V3 and then cached in
l− 1 of V3 at next time slot t + 1.

Authorized licensed use limited to: XIDIAN UNIVERSITY. Downloaded on November 30,2020 at 06:26:20 UTC from IEEE Xplore. Restrictions apply.

LUO et al.: COLLABORATIVE DATA SCHEDULING FOR VEC VIA DRL 9641

3) Be computed locally through the computation resource
of vehicle V1.

4) If none of the three actions above is adopted, data in
queue l will be moved to queue l − 1 of vehicle V1 if
l �= 1, otherwise deleted if l = 1, at next time slot t+ 1.

For the case when l = L, the input data in caching queue
l only come from the newly generated data with delay con-
straint L. The output of data in queue l when l = L has four
transitions, the same as when 1 ≤ l < L.

2) RSU Side: On the RSU side, as shown in Fig. 2(b), we
also detail the input and output of data in each queue l. We
divide the queue into two categories according to the queue
index, i.e., 1 ≤ l < L − 1 and l = L − 1. It is noteworthy
that the maximal queue index l of RSUs is L − 1. This is
because data cannot be generated by RSUs themselves and it
will take at least one-time slot for data to be offloaded from
vehicles to RSUs. Just like the analysis on the vehicle side,
we assume the index of time slot now is t, for the case when
1 ≤ l < L − 1, the input data in caching queue l in a given
RSU k comes from two sources.1

1) The data in l+ 1 of RSU k and has not been processed
at time slot t − 1.

2) Vehicles transmitted data with queue index l+1 to RSU
k at time slot t − 1.

The data in queue l of RSU k when 1 ≤ l < L − 1 has two
different outputs.

1) Be computed through the computation resource of ECN-
enable RSU.

2) Be moved to queue l− 1 of RSU k if l �= 1, otherwise
deleted if l = 1, at next time slot t + 1.

For the case when l = L − 1, the input data in caching
queue l only consist of the data with remaining lifetime l+ 1
(i.e., data with remaining lifetime L) offloaded from vehicles
through V2I communication at time slot t − 1. The output of
data in queue l when l = L− 1 has two different outputs, the
same as when 1 ≤ l < L− 1.

IV. DATA SCHEDULING: ANALYSIS, PROBLEM

FORMULATION, AND MDP

In this section, we first investigate the performance of the
formulated unified VEC framework with various transmission
and computation modes. Then, we formulate an optimal data
scheduling problem that takes into account both cost and delay
constraints.

A. Analysis of Data Scheduling: Transmission and
Computation

The data cached in the caching queues of both vehicles and
RSUs can be scheduled in different ways. We will detail them
in the following.

1) Data Processed Locally: We denote the processing capa-
bility (i.e., the amount of CPU frequency in cycles/s) at
vehicle n assigned for local computing as f local

n , then the
power consumption for vehicle n to process data locally is

1In this article, we do not consider the migration of data between RSUs,
which will be considered as our future work.

expressed as

plocal
n = κ1

(
f local
n

)3
(1)

where κ1 stands for the effective switched capacitance related
to the chip architecture in vehicle [27]. Accordingly, the energy
consumption of vehicle n for local processing during one-time
slot is expressed as

Elocal
n = plocal

n �t = κ1

(
f local
n

)3
�t. (2)

The amount of data be processed locally by vehicle n during
one-time slot is expressed as

Dlocal
n = f local

n �t

c
. (3)

2) Data Offloaded to RSU: In the VEC network, the data
can be offloaded to RSU through V2I communication sched-
uled by the control center. To model the data offloading
through V2I communication, we denote the path loss as d−ϑ ,
where d and ϑ denote the distance from the transmitter to the
receiver and the path-loss exponent, respectively. Moreover,
the channel fading coefficient is denoted by h, which is mod-
eled as a circularly symmetric complex Gaussian random
variable [28]. When data are offloaded from vehicle n to RSU
k on a licensed V2I channel, the transmission rate is given by

rt,V2I
n,k = Blog2

⎛
⎜⎝1+ Ptr

n |h|2

ω0

(
dt

n,k

)ϑ

⎞
⎟⎠ (4)

where Ptr
n is the transmission power of vehicle n, ω0 denotes

the white Gaussian noise power, and dt
n,k denotes the distance

from vehicle n to RSU k at time slot t. The energy consump-
tion of vehicle n for transmitting data during one-time slot is
expressed as

Etr
n = Ptr

n �t. (5)

3) Data Processed by RSU: The data in the caching queues
of RSUs are processed by deployed ECNs. We denote the
processing capability at RSU k as f ECN

k , then the power
consumption for RSU k to process data is expressed as

pECN
k = κ2

(
f ECN
k

)3
(6)

where κ2 stands for the effective switched capacitance related
to the chip architecture in RSU [27]. Accordingly, the energy
consumption of RSU k for data processing during one-time
slot is expressed as

EECN
k = pECN

k �t = κ2

(
f ECN
k

)3
�t. (7)

The amount of data processed by RSU k during one-time slot
is expressed as

DECN
k = f ECN

k �t

c
. (8)

Authorized licensed use limited to: XIDIAN UNIVERSITY. Downloaded on November 30,2020 at 06:26:20 UTC from IEEE Xplore. Restrictions apply.

9642 IEEE INTERNET OF THINGS JOURNAL, VOL. 7, NO. 10, OCTOBER 2020

4) Data Migrated to Collaborative Vehicle: When some
vehicles have no data to process or their data in caching queues
are delay tolerant and have longer remaining lifetime, they can
aid data processing as collaborative vehicles. In this way, data
can be also migrated to collaborative vehicles through V2V
communication. We denote the communication radius of vehi-
cles as RV. For arbitrary vehicle n and collaborative vehicle n′,
n can transmit data to n′ while n does not take any transmis-
sion action at the same time slot. The communication model is
similar to the V2I communication model and (4). When data
are migrated from n to n′ on a licensed V2V channel at time
slot t, the transmission rate is given by

rt,V2V
n,n′ = Blog2

⎛
⎜⎝1+ Ptr

n |h|2

ω0

(
dt

n,n′
)ϑ

⎞
⎟⎠ (9)

where dt
n,n′ is the distance between vehicle n and n′. It is

noteworthy that only when dt
n,n′ < RV does (9) hold.

B. Problem Formulation

At a give time slot, the data of each vehicle can be:
1) processed locally; 2) offloaded to RSUs; 3) migrated to
collaborative vehicles; and 4) kept in its caching queues. Let
αt

n,k = 1 indicate that the data of vehicle n running on road
segment k at time slot t are processed locally. Similarly, we
use β t

n,k = 1 to indicate that the data of vehicle n are offloaded
to RSU through V2I communication, and γ t

n,k = 1 to indicate
that the data of vehicle n are migrated to a collaborative vehicle
through V2V communication. The case αt

n,k = β t
n,k = γ t

n,k = 0
indicates that vehicle n keeps the data in its caching queues.
In addition, vehicle n can receive data migrated from other
vehicles, let δt

n,k indicate that vehicle n on road segment k is
on the receiving mode at time slot t. On the RSU side, each
RSU can process data or keep the data in its caching queues.
We use μt

k = 1 to indicate that RSU k processes data at time
slot t, and μt

k = 0 to indicate that RSU k keeps the data in its
caching queues.

To promote data processing, we introduce a penalty mech-
anism, which means a penalty will be resulted in if data are
not processed before its deadline. We use ξ to denote the
penalty coefficient indicating the penalty amount of one unit
data. Moreover, costs for communication and computation are
also produced during data scheduling. Those costs include:
1) the cost for using licensed channels of V2I and V2V com-
munications; 2) the cost for RSU computing data; and 3) the
energy consumption cost during data computing and transmit-
ting. To be able to process data under delay constraints, the
data with a smaller queue index should be processed first. We
use V t

k to denote the vehicle set in road segment k at time
slot t. The amount of data not meeting the delay constraints
at time slot t is then expressed as

Dt
loss =

∑
k∈K

⎛
⎝∑

n∈V t
k

αt
n,kmax

{
0, qt

n,1 − Dlocal
n

}

+ μt
kmax

{
0, gt

k,1 − DECN
k

}

+ (
1− αt

n,k

)
qt

n,1 +
(
1− μt

k

)
gt

k,1

⎞
⎠ (10)

where qt
n,1 and gt

k,1 denote the amount of data cached in
queue 1 of vehicle n and RSU k at time slot t, respectively.
Dlocal

n and DECN
k are the data processing capabilities of vehi-

cles and RSUs at one-time slot, as formulated by (3) and (8),
respectively.

To reduce cost while ensuring delay constraints through
making full use of communication and computation resources,
we formulate the data scheduling problem as

min{α,β,γ,δ,μ} Loss =
∞∑

t=1

⎧⎨
⎩ξDt

loss+
∑
k∈K

⎛
⎝Elocal

n

∑

n∈V t
k

αt
n,k

+
(

cI+ Etr
n

) ∑

n∈V t
k

β t
n,k

(
1− δt

n,k

)

+
(

cV+ Etr
n

) ∑

n∈V t
k

γ t
n,k

(
1− δt

n,k

)

+
(

cECN+ EECN
k

)
μt

k

⎞
⎠
⎫⎬
⎭

s.t. C1: αt
n,k, β t

n,k, γ t
n,k, δt

n,k, μt
k ∈ {0, 1}

C2: β t
n,kγ

t
n,k = 0

C3: β t
n,kδ

t
n,k = γ t

n,kδ
t
n,k = 0

C4: αt
n,kβ

t
n,k = αt

n,kγ
t
n,k = 0 (11)

where is a weight coefficient indicating the energy con-
sumption cost of one unit energy during data computing and
transmitting [29], and cI and cV denote the costs at a time slot
for using licensed channels for V2I and V2V communications,
respectively. cECN denotes the cost for RSU processing data at
a time slot. In (11), constraint C1 indicates that whether a vehi-
cle or an RSU takes one action or not at time slot t. Constraint
C2 indicates that vehicles cannot transmit data through V2I
and V2V communications simultaneously. Constraint C3 indi-
cates that when a vehicle is on the receiving mode, it cannot
transmit data neither through V2I nor V2V communication.
Constraint C4 indicates that at most one data processing action
among local computing, offloading through V2I, and migrating
through V2V can be chosen during one-time slot.

C. Model Data Processing Scheduling as MDP

In (11), Loss mainly depends on the states and data schedul-
ing actions of both vehicles and RSUs. States of the next time
slot only depend on the current state and the data scheduling
actions. Accordingly, the data scheduling problem can be for-
mulated as a Markov decision process (MDP) to analyze the
state transitions of caching queues.

We denote the state of the MDP at time slot t as St �
{St

1, St
2, . . . , St

K,�t}, where �t is the position state of vehi-
cles and RSUs, and St

k (1 ≤ k ≤ K) is the caching state
of vehicles and RSU in road segment k. Since the positions
of RSUs are fixed and the next positions of vehicles can be
obtained based on the current positions and running speeds,
the next state �t+1 can be easily obtained. Therefore, we

Authorized licensed use limited to: XIDIAN UNIVERSITY. Downloaded on November 30,2020 at 06:26:20 UTC from IEEE Xplore. Restrictions apply.

LUO et al.: COLLABORATIVE DATA SCHEDULING FOR VEC VIA DRL 9643

mainly focus on the caching state transitions. In arbitrary
road segment k, we define St

k � {Qt
1,k, Qt

2,k, . . . , Qt
|V t

k|,k, Gt
k},

where |V t
k| is the number of vehicles in road segment k at

time slot t, Qt
n,k (n ∈ V t

k) is the caching state of vehicle n
and is expressed as {qt

n,1, qt
n,2, . . . , qt

n,L}, Gt
k is the caching

state of RSU k and is expressed as {gt
k,1, gt

k,2, . . . , gt
k,L}. qt

n,l,
and gt

k,l (1 ≤ l ≤ L) denote the amount of data cached
in queue l of vehicle n and RSU k at time slot t, respec-
tively. We define the action taken by RSUs and vehicles as
At � {At

1, At
2, . . . , At

K}. For the RSU and vehicles in road seg-
ment k, we define At

k � {at
1,k, at

2,k, . . . , at
|V t

k|,k, ãt
k}, where at

n,k

(n ∈ V t
k) and ãt

k are the actions of vehicle n and RSU k,
respectively. at

n,k is consisted of the possible data scheduling
actions, expressed as at

n,k = {αt
n,k, β

t
n,k, γ

t
n,k, δ

t
n,k}. ãt

k can be
expressed as {μt

k}. To describe the caching state at the next
time slot t+ 1, we should calculate the amount of data trans-
mission during the current time slot t. The amount of data that
is transmitted from vehicle n to RSU k can be expressed as

Dt,off
n,k =

⎧⎪⎨
⎪⎩

β t
n,krt,V2I

n,k �tCV2I∣∣∣V t,off
k

∣∣∣
, V t,off

k �= ∅

0, V t,off
k = ∅

(12)

where V t,off
k denotes the set of vehicles in road segment k

choosing to offload data to RSU at time slot t. In addition,
we use V t,mig

k and V t,rec
k to denote the sets of vehicles in road

segment k choosing to transmit data to collaborative vehicles
and choosing to receive migration data at time slot t, respec-
tively. We define an indicator It,k

n,n′ to denote the connection

between vehicle n (n ∈ V t,mig
k) and n′ (n′ ∈ V t,rec

k), which
equals 1 when the connection is established and 0 otherwise,
It,k
n,n′ is defined as

It,k
n,n′ =

{
1, γ t

n,k = 1, δt
n′,k = 1, dn,n′ < RV

0, otherwise.
(13)

We assume that a vehicle n can only transmit data to at most
one collaborative vehicle at one-time slot, hence It,k

n,n′ meets the

condition that
∑

n′∈V t,rec
k

It,k
n,n′ ≤ 1. The amount of data that is

transmitted from vehicle n to n′ can be expressed as

Dt,mig
n,n′,k =

⎧⎪⎨
⎪⎩

It,k
n,n′

rt,V2V
n,n′ �tCV2V∣∣∣V t,mig

k

∣∣∣
, V t,mig

k �= ∅

0, V t,mig
k = ∅.

(14)

We use lt,nmin to denote the smallest index of the queue with
nonempty queueing data of arbitrary vehicle n at time slot t.
Then, the amount of data migrated from queue l+1 of vehicle
n̄ to queue l of vehicle n and RSU k at time slot t are
expressed as

Dt,V2V
n̄,n,k,l =

⎧⎪⎪⎨
⎪⎪⎩

1
(

lt,n̄min == l+ 1
)

× It,k
n̄,nrt,V2V

n̄,n �tCV2V/|V t,mig
k |, V t,mig

k �= ∅

0, V t,mig
k = ∅

(15)

and

Dt,V2I
n̄,k,l =

⎧⎪⎪⎨
⎪⎪⎩

1
(

lt,n̄min == l+ 1
)

× β t
n̄,krt,V2I

n̄,k �tCV2I/|V t,off
k |, V t,off

k �= ∅

0, V t,off
k = ∅

(16)

respectively, where 1(τ) is an indicator function which equals
1 if τ is true and 0 otherwise. Accordingly, given caching state
Qt

n,k of vehicle n in road segment k, the state of queues that
form Qt+1

n,k is consisted of two parts, namely, qt+1
n,lt,nmin

and qt+1
n,l

(l �= lt,nmin), which are expressed as

qt+1
n,lt,nmin
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max
{

0, qt
n,2 +�1D1

+∑
n̄∈V t,mig

k
Dt,V2V

n̄,n,k,1

− Dlocal
n

}
, lt,nmin = 1

max

{
0, qt

n,lt,nmin+1
+�lt,nmin

Dlt,nmin

+∑
n̄∈V t,mig

k
Dt,V2V

n̄,n,k,lt,nmin

−∑n′∈V t,rec
k

Dt,mig
n,n′,k

− Dt,off
n,k − Dlocal

n

}
, 1 < lt,nmin < L

max
{

0,�LDL − Dt,off
n,k − Dlocal

n

−∑n′∈V t,rec
k

Dt,mig
n,n′,k

}
, lt,nmin = L

(17)

and

qt+1
n,l =

⎧⎪⎨
⎪⎩

qt
n,l+1 +�lDl

+∑
n̄∈V t,mig

k
Dt,V2V

n̄,n,k,l, l �= lt,nmin, 1 ≤ l < L

�lDl, l �= lt,nmin, l = L

(18)

respectively. Similarly, we use l̃t,kmin to denote the smallest index
of the queue with nonempty queueing data of arbitrary RSU
k at time slot t. Based on caching state Gt

k of RSU k, the state
of queues that form Gt+1

k is consisted of two parts, namely,
gk,l̃t,kmin

and gk,l (l �= l̃t,kmin), which are expressed as

gt+1
k,l̃t,kmin

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

max

{
0, gt

k,l̃t,kmin+1
− DECN

k

}

+∑
n̄∈V t,off

k
Dt,V2I

n̄,k,l̃t,kmin

, 1 ≤ l̃t,kmin < L− 1
∑

n̄∈V̂ t,off
k

Dt,V2I
n̄,k,l̃t,kmin

− DECN
k , l̃t,kmin = L− 1

(19)

and

gt+1
k,l =

⎧⎨
⎩

gt
k,l+1 +

∑
n̄∈V̂ t,off

k
Dt,V2I

n̄,k,l , l �= l̃t,kmin, 1 ≤ l < L− 1
∑

n̄∈V̂ t,off
k

Dt,V2I
n̄,k,l , l �= lt,kmin, l = L− 1

(20)

respectively.

Authorized licensed use limited to: XIDIAN UNIVERSITY. Downloaded on November 30,2020 at 06:26:20 UTC from IEEE Xplore. Restrictions apply.

9644 IEEE INTERNET OF THINGS JOURNAL, VOL. 7, NO. 10, OCTOBER 2020

In state St, the penalty and cost by taking action At can be
expressed as

Losst = ξDt
loss +

∑
k∈K

⎛
⎝Elocal

n

∑

n∈V t
k

αt
n,k

+
(

cI + Etr
n

) ∑

n∈V t
k

β t
n,k

(
1− δt

n,k

)

+
(

cV + Etr
n

) ∑

n∈V t
k

γ t
n,k

(
1− δt

n,k

)

+
(

cECN + EECN
k

)
μt

k

⎞
⎠. (21)

The purpose of the MDP is deriving an optimal data
scheduling strategy that minimizes the cumulative value of
Losst over time slots. The optimal strategy that indicates the
data scheduling actions, is expressed as

π∗ = arg min
π

E

(∞∑
t=1

ηtLosst

)
(22)

where 0 < η < 1 is a discount factor used to indicate the
impact of future Loss on current actions.

V. DQN-BASED OPTIMAL DATA SCHEDULING SCHEME

A. From Q-Learning to the Deep Q-Network

In the formulated MDP problem (22), the large scale of state
space and action space makes it hard to find the optimal data
scheduling strategy π∗ [30]. Fortunately, the reinforcement
learning technology is powerful in handling the schedul-
ing problem [13]. Reinforcement learning is a main branch
of machine learning, where agents learn to take series of
actions that maximize the cumulative future reward with cor-
responding policies over states [15], [16]. Accordingly, our
proposed MDP can be considered as a reinforcement learning
problem, to minimize cumulative future loss. Under a given
data scheduling strategy π , the expected long-term loss from
taken action At at state St can be expressed as an action-value
function (i.e., Q-function), which is shown as

Qπ

(
St, At) = E

[∞∑
i=0

ηiLosst+i
∣∣∣(St, At)

]

= E
[
Losst + η1Losst+1 + · · ·

∣∣∣(St, At)]

= ESt+1

[
Losst + ηQπ

(
St+1, At+1

)∣∣∣(St, At)]. (23)

When given action At in state St, the expected minimum loss
is expressed as

Q∗
(
St, At) = ESt+1

[
Losst + ηmin

At+1
Q
(

St+1, At+1
)∣∣∣(St, At)

]
.

(24)

Based on (24), the minimum Q∗(St, At) and optimal data
scheduling actions can be derived by value and action iteration.

The updated process of Q(St, At), namely, the Q-learning
process, is expressed as

Q
(
St, At)← Q

(
St, At)+ ϕ

[
Losst + ηmin

At+1
Q
(

St+1, At+1
)

− Q
(
St, At)

]
(25)

where ϕ is the learning rate.
Since a Q-table is used in the Q-learning process to

store learned state–action combinations and corresponding
Q-values, discrete state space is utilized in the Q-table.
However, the states of the VEC network consist of the amount
of data cached in the queues of vehicles and RSUs, whose
value is continuous. Thus, the Q-learning approach cannot be
directly implemented in solving our proposed MDP problem.
To compensate the limitation of Q-learning, we incorporate the
deep learning technology with the Q-learning method, which
forms the DQN. Instead of Q-function, DQN uses a deep neu-
ral network as a nonlinear approximator that is able to capture
the complex interaction among various states and actions. The
inputs of the deep neural network are states, and the outputs
are Q-values of actions. With the help of DQN, the Q-value
in (23) can be estimated as Q(St, At) ≈ Q(St, At; θ), where θ

are the weights of the DQN. Accordingly, the optimal action
for data scheduling in state St is the one with the minimum
Q(St, At; θ), which is shown as

At∗ = arg min
At

Q
(
St, At; θ). (26)

B. DQN Training

To guarantee the approximation ability of the estimated Q-
value, Q(St, At; θ) should be trained toward the target value
Losst + ηmin

At+1
Q(St+1, At+1), which is substituted with the

approximate target value as

yt = Losst + ηmin
At+1

Q
(

St+1, At+1; θ t−1
)
. (27)

To minimize the difference between estimated and target
values, we define a loss function as

Er
(
θ t) = E

[(
yt − Q

(
St, At; θ t))2

]
(28)

where θ t denotes the weights of the DQN at time slot t. The
parameters from the previous time slot θ t−1 are held fixed
when optimizing the loss function Er(θ t) [31]. Differentiating
the loss function with respect to the weights, we get the
gradient as

∇θ t Er(θ t) = E
[
2
(
Q
(
St, At; θ t)− yt)∇θ t Q

(
St, At; θ t)]. (29)

Based on the gradient descent, θ t is updated as

θ t ← θ t − ε∇θ t Er
(
θ t) (30)

where ε is a step size coefficient, which controls the updating
step size in each iteration.

In order to improve learning efficiency while removing the
correlations in the subsequent training samples at the same
time, the experience replay technique is utilized in the learning
process. The learned experience et = (St, At, Losst, St+1) at

Authorized licensed use limited to: XIDIAN UNIVERSITY. Downloaded on November 30,2020 at 06:26:20 UTC from IEEE Xplore. Restrictions apply.

LUO et al.: COLLABORATIVE DATA SCHEDULING FOR VEC VIA DRL 9645

Fig. 3. DQN architecture for solving the data scheduling problem.

each time slot is stored in a data set D in a replay memory [32].
Then, we randomly draw a batch of stored experience as
samples to train parameters of DQN. Before performing expe-
rience replay, an action is selected and executed according to
an ε-greedy policy, which avoids local optimum while bal-
ancing exploration and exploitation during training. That is, a
random action is chosen with probability ε to explore better
data scheduling strategies, otherwise, the action that has the
minimum Q-value is chosen.

It is noteworthy that the same parameters are used for cal-
culating the estimated and target Q-values. As a consequence,
there is a big correlation between the estimated and target
Q-values. Therefore, it means that at every step of training,
our estimated Q-value shifts but also the target Q-value shifts,
which lead to a big oscillation in training. To address this issue,
we introduce a separate target Q-network to calculate the tar-
get Q-value. The parameters of the target Q-network at time
slot t are denoted as θ̄ t. The target Q-value is correspondingly
expressed as

ȳt = Losst + ηmin
At+1

Q
(

St+1, At+1; θ̄ t
)
. (31)

Similarly, yt in (28) and (29) is substituted by ȳt. θ̄ t is hold
fixed and only updated with the DQN parameters (θ t) every ζ

time slots. Fig. 3 shows the DQN architecture for solving the
data scheduling problem in the VEC network, where MainNet
refers to the neural network used to calculate the estimated
Q-value and TargetNet refers to the neural network used to
calculate the target Q-value. The full algorithm for training the
DQN for optimal task scheduling is presented in Algorithm 1.

VI. SIMULATION RESULTS AND DISCUSSIONS

In this section, we conduct simulations to validate the
performance of the proposed data scheduling scheme. First,
we describe the simulation scenario and parameter settings.
Next, we discuss the simulation results.

A. Simulation Setup

We consider a two-way three-lane scenario. The length of
per lane is 1000 m and the width of per lane is 4 m. One
RSU is deployed in the middle of the roadside, with coordi-
nate (0 m, 0 m). Three vehicles that are on three different lanes
are keeping moving back and forth along their lanes. The ini-
tial positions of the three vehicles are set to (−500 m, 2 m),
(0 m, 6 m), and (500 m, 10 m), respectively. For the speed
of the three vehicles, we use part of the GAIA Open data set
containing speeds of DiDi Express in Xi’an China [33]. The
data set contains the GPS coordinates and real-time speeds
of DiDi Express over 30 days and over thousands of districts
and roads. We randomly choose three loads and calculate the
average speeds of vehicles over the three roads, respectively.
Based on the speed statistics, we set the speeds of the three
vehicles to 17.7, 35.8, and 52.6 km/h, respectively. The cov-
erage radius of RSU and vehicles is set to 500 and 250 m,
respectively. The generated data of the vehicles are classified
into four types. The length of the time slot is set to 100 ms.
The data size is randomly distributed between 0.2 and 5.0,
and the data delay constraints are randomly generated from
{1, 2, 3, 4}. The detailed parameters setting about vehicles and
RSU are shown in Table II.

Authorized licensed use limited to: XIDIAN UNIVERSITY. Downloaded on November 30,2020 at 06:26:20 UTC from IEEE Xplore. Restrictions apply.

9646 IEEE INTERNET OF THINGS JOURNAL, VOL. 7, NO. 10, OCTOBER 2020

Algorithm 1 DQN-Based Data Scheduling
1: Initialize replay memory D
2: Initialize DQN with random weights θ

3: Initialize target DQN with weights θ̄ = θ

4: for episode e = 1, ..., emax do
5: Observe the initial state S1;
6: for time-slot t = 1, ..., tmax do
7: Choose a random probability p;
8: if p ≤ ε then
9: Select a random action At,

10: else
11: Choose action At = arg min

At
Q(St, At; θ t);

12: end if
13: Execute action At, calculate Losst and derive the next

state St+1 according to formulas (17)–(20);
14: Store the experience (St, At, Losst, St+1) into D in the

replay memory;
15: Get random minibatch of samples (Si, Ai, Lossi, Si+1)

from D;
16: Calculate the target Q-value from the target DQN,

ȳi = Lossi + ηmin
Ai+1

Q(Si, Ai; θ̄ t);

17: Perform the gradient descent step on Er(θ i) = E[(ȳi−
Q(Si, Ai; θ t))2] with respect to θ t, and update θ t;

18: Every ζ time-slots, update θ̄ t with θ t;
19: end for
20: end for

TABLE II
PARAMETERS SETTING ABOUT VEHICLES AND RSU

Hereinafter, we introduce the simulation settings about
DQN. The simulation uses TensorFlow [34] to implement the
DQN. We use a GPU-based server with four NVIDIA GTX
2080 Ti GPUs, where the CPU is Intel Xeno E5-2690 v4
with 64-GB memory. The software environment we utilize is
Keras 2.3.1 (based on TensorFlow) with Python 3.7 on Ubuntu
16.04.6 LTS. Both the main and target Q-networks use a fully
connected deep neural network with two hidden layers. The

Fig. 4. Episode reward (i.e., data scheduling loss) achieved during training.

ReLU function is adopted as the activation function for hid-
den layers. The number of nodes for the hidden layers is set
to 128. We set the learning rate and discount factor to 0.001
and 0.95, respectively. For the ε-greedy policy, we initialize
ε = 1.0 and let it decrease by a decay coefficient 0.995 over
time slots until it reaches 0.1. The minibatch and maximum
replay memory sizes are set to 64 and 10 000, respectively.
The maximum time slots tmax and episodes emax are set to
600 and 3000, respectively. The parameter updating frequency
for target DQN ζ is set to 10. The detailed parameter setting
of DQN is listed in Table III.

B. Simulation Results

1) Effectiveness: We mainly consider the following strate-
gies and evaluate their performance under the same conditions.

1) Our proposal, that is, the proposed data scheduling
scheme aiming at minimizing the cumulative value of
loss over time slots, and it is solved by DQN with
separated target Q-network (recorded as our proposal).

2) The proposed data scheduling scheme aiming at mini-
mizing the cumulative value of loss over time slots, and
it is solved by DQN without separate target Q-network
(recorded as DQN without separate target Q-network).

We first evaluate the timeliness of our proposal. Similarly,
the scheduling strategy without separate target Q-network is
evaluated under the same conditions as a comparison scheme.
Fig. 4 shows the changes in the reward (i.e., the data schedul-
ing loss) obtained by the DRL agent and training episodes
under different schemes. The figure shows that the loss of our
proposal tends to be optimal and stable in about 200 episodes
of training, and no divergence and oscillation problems are
encountered in the simulation. As the episodes increase, the
loss gradually stabilizes at the optimal value, which means that
the agent of our proposal has learned the optimal data schedul-
ing strategy to minimize long-term loss. The scheme DQN
without separate target Q-network requires longer episodes to
stabilize the loss (approximately 400). Although being sta-
ble, the loss of the scheme DQN without separate target
Q-network is prone to relatively fluctuations and oscillation.
This is because there is a big correlation between the esti-
mated and target Q-values, and the estimated Q-values shift

Authorized licensed use limited to: XIDIAN UNIVERSITY. Downloaded on November 30,2020 at 06:26:20 UTC from IEEE Xplore. Restrictions apply.

LUO et al.: COLLABORATIVE DATA SCHEDULING FOR VEC VIA DRL 9647

TABLE III
PARAMETERS SETTING OF DQN

but also the target Q-values shifts when the same parameters
are used during the training process. The figure indicates that
our proposal is more effective for solving the data scheduling
problem.

2) Average Loss: Average loss indicates the average value
of long-term data scheduling loss [i.e., Loss in (11)] over
time slots. The following strategies are used for performance
comparison.

1) The proposed data scheduling scheme based on DQN
with separate target Q-network (record as our proposal).

2) The data are only computed and processed by vehicles
themselves (record as local-pro-only).

3) The data are only offloaded to RSU for computing and
processing (record as offload-only).

4) The scheme similar to our proposal, except for collabo-
rative computing when V2V action is adopted. That is to
say, this scheme has no collaborative computing (record
as without collaborative computing).

We evaluate the performance of average loss under different
schemes and different data sizes. The data size indicates the
amount of data generated in each time slot. The overall results
are shown in Fig. 5. Overall, the average loss increases with
the increasing data size. Specifically, the variation process of
average loss can be divided into four phases. The first phase is
when data size varies from about 0.2 to 0.6. The second phase
is when data size varies from about 0.6 to 1.0. The third phase is
when data size varies from about 1.0 to 4.4. The fourth phase
is when data size varies from 4.4 to 5.0. In the following, the
four phases will be discussed in detail, respectively.

The first phase is shown as the circled part in Fig. 5(a).
To show the variation process clearly, this part is zoomed in,
as shown in the left figure of Fig. 5(b). In this phase, the
average losses of local-pro-only, our proposal, and without
collaborative computing have the same value and variation
trending. However, the average loss of offload-only is much
higher than the other three schemes. This is because the local
computing capacity of vehicles is sufficient to process the data
when data size is small, hence, there will be no penalty caused
by unprocessed data. Since the cost of local computing is
much lower than the cost of RSU computing (consisted of V2I

(a)

(b)

Fig. 5. Average loss with various data size and different schemes. (a) Data
size varied from 0.2 to 5.0. (b) Circled part and framed part in Fig. 5(a).

communication cost and RSU computing cost), both agents
of our proposal and without collaborative computing learn to
adopt local computing actions for the purpose of minimizing
the cost thus minimizing the loss. The underlying reason why
the average loss of offload-only increases slowly is that the cost
of V2I communication and RSU computing is relatively high.

Authorized licensed use limited to: XIDIAN UNIVERSITY. Downloaded on November 30,2020 at 06:26:20 UTC from IEEE Xplore. Restrictions apply.

9648 IEEE INTERNET OF THINGS JOURNAL, VOL. 7, NO. 10, OCTOBER 2020

TABLE IV
AVERAGE LOSS OF Offload-Only UNDER SMALL DATA SIZES

In each time slot, the data of vehicles are offloaded to RSU
through V2I communication, and RSU computes the offloaded
data. The communication and computation costs are relatively
fixed because all the costs are calculated in the unit of time
slot. The cost of computing energy consumption of RSU is
much lower than the communication and computation costs.
Accordingly, the increase of data size would result in a small
increase in loss caused by the increase of computing energy
consumption. Another reason why the average loss looks like
it increases slowly is that the vertical scale is of the exponential
type. We tabulate the variation of average loss of offload-only
in Table IV.

For the second phase, as the data size increases, the average
loss of local-pro-only increases rapidly and exceeds that of
offload-only. The underlying reason is that the data size in
this phase exceeds the local computing capacity of vehicles,
the task not meeting the delay constraints will result in a high
loss because of the penalty to the system, as described in (10)
and (11). It is noteworthy that the average losses of both our
proposal and without collaborative computing are lower than
that of local-pro-only and offload-only. This is because the
former two schemes can optimally decide whether data are
processed locally or offloaded to RSU, hence the data that
exceed the local computing capacity are offloaded to RSU, for
the purpose of minimizing the loss. In addition, the average
loss of our proposal is lower than that of without collaborative
computing. The underlying reason is that, in our proposal, the
data can be migrated to collaborative vehicles through V2V
communication for a lower cost thus a lower loss than being
offloaded to RSU.

As data size keeps increasing, the third phase depicts the
increase of average loss for all the four schemes. In this phase,
the data size does not exceed the sum of local computing
capacity and the data transmission capacity. In our proposal
and without collaborative computing, the data can be partly
offloaded to RSU for processing. Accordingly, no penalty is
introduced, which has a lower average loss than local-pro-only
and offload-only.

The fourth phase is shown as the framed part in Fig. 5(a). In
this phase, the average losses of offload-only, our proposal, and
without collaborative computing have a rapid increase when
the data size increases. The underlying reason is that, during
this phase, the data size exceeds the sum of local computing
capacity and the data transmission capacity. In this case, the
penalty will be introduced due to unprocessed data, which
results in a high loss according to (11). To show the variation
process clearly, this part is also zoomed in, and the y-axis is
changed to the linear scale, as shown in the right figure of
Fig. 5(b). When the data size in this phase reaches a threshold
(approximately 4.6), the average losses of offload-only, our
proposal, and without collaborative computing have the same
increasing trending as local-pro-only. This is because all the
four schemes cannot completely process all the generated data

Fig. 6. Average proportion of data scheduling actions on the vehicle side
under various data size.

when the data size exceeds a threshold. Accordingly, how fast
the average loss increases depends on how fast the data size
increases. Furthermore, we can find that the average loss of
our proposal has almost the same values as that of the scheme
without collaborative computing. This is because if the data are
migrated to collaborative vehicles, a high loss will be caused
due to the limited computing capacity of collaborative vehicles.
Instead, during the training process, the agent learns that the
data should be offloaded to RSU for processing to minimize
the loss.

3) Data Scheduling Actions: To understand how the agent
of our proposal selects the optimal data scheduling actions
during the training process, we evaluate the proportion of
scheduling actions on both the vehicle side and RSU side.
As comparison, we select four different data sizes, i.e., 0.5,
2.0, 3.5, and 5.0.

Fig. 6 shows the proportion of data scheduling actions on
vehicle side under different data sizes. It is not difficult to find
out that the action is gradually changing from local computing
to offloading through V2I as data size increases. The reason
is that when data size is small, the local computing capacity
of vehicles is sufficient to process the data, the agent prefers
to select local computing action for vehicles to minimize the
cost thus minimize the loss. As the data size exceeds the local
computing capacity of vehicles, the proportions of offloading
through V2I, migrating through V2V, and receiving actions
increase. This is because the task date should be processed
under delay constraints to reduce the timeout penalty thus
minimize the loss. The proportion of migrating through V2V
action has almost the same value as the receiving action. The
reason is that the establishment of a communication link must
contain a sender and a receiver. It is noteworthy that the pro-
portion of migrating through V2V action increases first then
decreases as data size increases. The underlying reason is that,
when data size is small, local computing is sufficient and the
cost of migrating through V2V is higher than local comput-
ing. As data size increases and exceeds the local computing
capacity, instead of offloading to RSU, data can be migrated
to collaborative vehicles for processing because the cost of
migrating through V2V is lower than offloading through V2I.

Authorized licensed use limited to: XIDIAN UNIVERSITY. Downloaded on November 30,2020 at 06:26:20 UTC from IEEE Xplore. Restrictions apply.

LUO et al.: COLLABORATIVE DATA SCHEDULING FOR VEC VIA DRL 9649

Fig. 7. Average proportion of data scheduling actions on the RSU side under
various data size.

As data size keeps increasing, the proportion of migrating
through V2V decreases until its value reaches almost 0. This is
because if migrating through V2V action is adopted, the lim-
ited computing capacity of collaborative vehicles will cause
much timeout penalty thus greatly increasing the loss, which
violates the agent’s purpose during the training process.

Fig. 7 shows the proportion of data scheduling actions on
RSU side under different data sizes. There are two actions
(i.e., processing data and caching data) related to RSU. It can
be seen that the proportions of both processing and caching
equal 0 when the data size is 0.5. The underlying reason is
that under this value of data size, the local computing capacity
of vehicles is sufficient to process data, the agent learns to
choose local computing action during training to reduce cost
thus minimize the loss. It is also consistent with the analysis
for the first phase in Fig. 5. More data are offloaded to RSU
as data size increases, the proportion of processing action also
increases. This is because that there is a high probability that
more data are cached in the queue with index 1 as the data
size increases, the penalty would be thus introduced if data are
not processed. In order to reduce the penalty thus minimize
the loss, the proportion of processing data increases with the
increase of data size. We can also draw a valuable conclusion
that even when the data size is 5.0, the computing capacity
of RSU is sufficient to process data. The underlying reason
is that the proportion of processing action is not 100% when
data size is 5.0, which indicates that the RSU processes data
not in each time slot to reduce the cost of processing data thus
minimize the loss.

VII. CONCLUSION

We argue that with the development of edge computing
and autonomous driving, data communication and computation
offloading will equally dominate the usage of bandwidth, and a
unified framework to jointly consider all resources available in
the network are necessary. As motivated, we have investigated
the data scheduling problem in a unified paradigm where data
can be processed locally, offloaded to RSUs, migrated to col-
laborative vehicles, or kept in caching queues. A multiqueue
model for data caching on both the vehicle side and RSU side
has been developed accordingly. To derive the optimal data
scheduling strategy, we formulated an MDP model to reflect the

interaction between data scheduling actions and loss, by jointly
considering communication resource, caching state, computing
resource, mobility of vehicles, as well as delay requirements
of data. Next, we developed a DRL framework for the data
scheduling problem, refining the state, action, and reward func-
tion, respectively. A DQN-based method with separate target
Q-network was then proposed for solving this problem, which
can efficiently optimize the data scheduling for minimizing the
loss. Extensive simulation results were presented to illustrate
that our proposal efficiently reduces data processing costs and
helps data be processed under delay constraints.

In our future work, we intend to extend in three direc-
tions. First, we would include the migration of data between
RSUs and consider the edge-cloud collaboration in vehicular
networks. Second, we would apply the proposed algorithm in
a real-world testbed and verify the performance. Third, since
overhead would be generated when the state of each vehi-
cle is collected, we would discuss and evaluate the overhead
performance of the proposed method.

REFERENCES

[1] L. Liu, C. Chen, Q. Pei, S. Maharjan, and Y. Zhang. (2019). Vehicular
Edge Computing and Networking: A Survey. [Online]. Available:
https://arxiv.org/abs/1908.06849

[2] K. Zhang, S. Leng, X. Peng, L. Pan, S. Maharjan, and Y. Zhang,
“Artificial intelligence inspired transmission scheduling in cognitive
vehicular communications and networks,” IEEE Internet Things J.,
vol. 6, no. 2, pp. 1987–1997, Apr. 2019.

[3] Y. Dai, D. Xu, S. Maharjan, G. Qiao, and Y. Zhang, “Artificial intelli-
gence empowered edge computing and caching for Internet of Vehicles,”
IEEE Wireless Commun., vol. 26, no. 3, pp. 12–18, Jun. 2019.

[4] P. Mach and Z. Becvar, “Mobile edge computing: A survey on architec-
ture and computation offloading,” IEEE Commun. Surveys Tuts., vol. 19,
no. 3, pp. 1628–1656, 3rd Quart., 2017.

[5] C. Li, Q. Luo, G. Mao, M. Sheng, and J. Li, “Vehicle-mounted
base station for connected and autonomous vehicles: Opportunities
and challenges,” IEEE Wireless Commun., vol. 26, no. 4, pp. 30–36,
Aug. 2019.

[6] F. Sun et al., “Cooperative task scheduling for computation offload-
ing in vehicular cloud,” IEEE Trans. Veh. Technol., vol. 67, no. 11,
pp. 11049–11061, Nov. 2018.

[7] C. Wang, C. Liang, F. R. Yu, Q. Chen, and L. Tang, “Computation
offloading and resource allocation in wireless cellular networks with
mobile edge computing,” IEEE Trans. Wireless Commun., vol. 16, no. 8,
pp. 4924–4938, Aug. 2017.

[8] K. Zhang, Y. Mao, S. Leng, S. Maharjan, and Y. Zhang, “Optimal delay
constrained offloading for vehicular edge computing networks,” in Proc.
IEEE Int. Conf. Commun. (IEEE ICC), 2017, pp. 1–6.

[9] P. Paymard, S. Rezvani, and N. Mokari, “Joint task scheduling
and uplink/downlink radio resource allocation in PD-NOMA based
mobile edge computing networks,” Phys. Commun., vol. 32, no. 2019,
pp. 160–171, 2018.

[10] N. Cheng et al., “Space/aerial-assisted computing offloading for IoT
applications: A learning-based approach,” IEEE J. Sel. Areas Commun.,
vol. 37, no. 5, pp. 1117–1129, May 2019.

[11] Q. Qi and Z. Ma. (2018). Vehicular Edge Computing Via Deep
Reinforcement Learning. [Online]. Available: https://arxiv.org/abs/
1901.04290

[12] J. Chen and X. Ran, “Deep learning with edge computing: A review,”
Proc. IEEE, vol. 107, no. 8, pp. 1655–1674, Aug. 2019.

[13] Z. Zhou, X. Chen, E. Li, L. Zeng, K. Luo, and J. Zhang,
“Edge intelligence: Paving the last mile of artificial intelligence
with edge computing,” Proc. IEEE, vol. 107, no. 8, pp. 1738–1762,
Aug. 2019.

[14] L. T. Tan and R. Q. Hu, “Mobility-aware edge caching and computing
in vehicle networks: A deep reinforcement learning,” IEEE Trans. Veh.
Technol., vol. 67, no. 11, pp. 10190–10203, Nov. 2018.

[15] Y. He, N. Zhao, and H. Yin, “Integrated networking, caching, and com-
puting for connected vehicles: A deep reinforcement learning approach,”
IEEE Trans. Veh. Technol., vol. 67, no. 1, pp. 44–55, Jan. 2018.

Authorized licensed use limited to: XIDIAN UNIVERSITY. Downloaded on November 30,2020 at 06:26:20 UTC from IEEE Xplore. Restrictions apply.

9650 IEEE INTERNET OF THINGS JOURNAL, VOL. 7, NO. 10, OCTOBER 2020

[16] K. Zhang, Y. Zhu, S. Leng, Y. He, S. Maharjan, and Y. Zhang, “Deep
learning empowered task offloading for mobile edge computing in urban
informatics,” IEEE Internet Things J., vol. 6, no. 5, pp. 7635–7647,
Oct. 2019.

[17] K. Zhang, Y. Mao, S. Leng, Y. He, and Y. Zhang, “Mobile-edge
computing for vehicular networks: A promising network paradigm
with predictive off-loading,” IEEE Veh. Technol. Mag., vol. 12, no. 2,
pp. 36–44, Jun. 2017.

[18] T. Q. Dinh, J. Tang, Q. D. La, and T. Q. S. Quek, “Offloading in mobile
edge computing: Task allocation and computational frequency scaling,”
IEEE Trans. Commun., vol. 65, no. 8, pp. 3571–3584, Aug. 2017.

[19] J. Du, F. R. Yu, X. Chu, J. Feng, and G. Lu, “Computation offload-
ing and resource allocation in vehicular networks based on dual-
side cost minimization,” IEEE Trans. Veh. Technol., vol. 68, no. 2,
pp. 1079–1092, Feb. 2019.

[20] Q. Luo, C. Li, T. H. Luan, and Y. Wen, “Optimal utility of vehi-
cles in LTE-V scenario: An immune clone-based spectrum allo-
cation approach,” IEEE Trans. Intell. Transp. Syst., vol. 20, no. 5,
pp. 1942–1953, May 2018.

[21] M.-A. Messous, H. Sedjelmaci, N. Houari, and S.-M. Senouci,
“Computation offloading game for an UAV network in mobile edge
computing,” in Proc. IEEE Int. Conf. Commun. (IEEE ICC), 2017,
pp. 1–6.

[22] T. Q. Dinh, Q. D. La, T. Q. S. Quek, and H. Shin, “Learning for com-
putation offloading in mobile edge computing,” IEEE Trans. Commun.,
vol. 66, no. 12, pp. 6353–6367, Dec. 2018.

[23] L. Lin, X. Liao, H. Jin, and P. Li, “Computation offloading toward edge
computing,” Proc. IEEE, vol. 107, no. 8, pp. 1584–1607, 2019.

[24] J. Li et al., “An end-to-end load balancer based on deep learning for
vehicular network traffic control,” IEEE Internet Things J., vol. 6, no. 1,
pp. 953–966, Feb. 2019.

[25] E. Li, L. Zeng, Z. Zhou, and X. Chen, “Edge AI: on-demand acceler-
ating deep neural network inference via edge computing,” IEEE Trans.
Wireless Commun., vol. 19, no. 1, pp. 447–457, Oct. 2019.

[26] H. Cao and J. Cai, “Distributed multiuser computation offload-
ing for cloudlet-based mobile cloud computing: A game-theoretic
machine learning approach,” IEEE Trans. Veh. Technol., vol. 67, no. 1,
pp. 752–764, Jan. 2018.

[27] Y. Mao, J. Zhang, S. H. Song, and K. B. Letaief, “Power-delay tradeoff
in multi-user mobile-edge computing systems,” in Proc. IEEE Global
Commun. Conf. (GLOBECOM), 2016, pp. 1–6.

[28] Y. Wang, M. Sheng, X. Wang, L. Wang, and J. Li, “Mobile-edge com-
puting: Partial computation offloading using dynamic voltage scaling,”
IEEE Trans. Commun., vol. 64, no. 10, pp. 4268–4282, Oct. 2016.

[29] Y. Kim, J. Kwak, and S. Chong, “Dual-side optimization for cost-delay
tradeoff in mobile edge computing,” IEEE Trans. Veh. Technol., vol. 67,
no. 2, pp. 1765–1781, Feb. 2018.

[30] O.-A. Maillard, T. A. Mann, and S. Mannor, “How hard is my MDP?
The distribution-norm to the rescue,” in Proc. Adv. Neural Inf. Process.
Syst., 2014, pp. 1835–1843.

[31] V. Mnih, K. Kavukcuoglu, and D. Silver. (2013). Playing
Atari With Deep Reinforcement Learning. [Online]. Available:
https://arxiv.org/abs/1312.5602

[32] V. Mnih et al., “Human-level control through deep reinforcement
learning,” Nature, vol. 518, no. 7540, pp. 529–533, 2015.

[33] Didi Chuxing GAIA Initiative. Urban Traffic Time Index and
Trajectory Data (New). Accessed: Oct. 22, 2019. [Online]. Available:
https://gaia.didichuxing.com

[34] M. Abadi et al. (2016). TensorFlow: Large-Scale Machine Learning
on Heterogeneous Systems. [Online]. Available: https://arxiv.org/abs/
1603.04467

Quyuan Luo received the B.E. degree from the
Changchun University of Science and Technology,
Changchun, China, in 2011. He is currently pursuing
the Ph.D. degree in communication and information
system with Xidian University, Xi’an, China.

He is also a Visiting Scholar of computer science
with Wayne State University, Detroit, MI, USA, in
2019. His collaborator with Wayne State University
is Prof. W. Shi. His current research interests include
intelligent transportation systems, content distribu-
tion, edge computing, and resource allocation in
vehicular networks.

Changle Li (Senior Member, IEEE) received the
Ph.D. degree in communication and information
system from Xidian University, Xi’an, China, in
2005.

He conducted his postdoctoral research in Canada
and the National Institute of information and
Communications Technology, Tokyo, Japan, respec-
tively. He was a Visiting Scholar with the University
of Technology Sydney, Ultimo, NSW, Australia.
He is currently a Professor with the State Key
Laboratory of Integrated Services Networks, Xidian

University. His research interests include intelligent transportation systems,
vehicular networks, mobile ad hoc networks, and wireless sensor networks.

Tom H. Luan (Senior Member, IEEE) received
the B.E. degree from Xi’an Jiaotong University,
Xi’an, China, in 2004, the M.Phil. degree from
Hong Kong University of Science and Technology,
Hong Kong, in 2007, and the Ph.D. degree from the
University of Waterloo, Waterloo, ON, Canada, in
2012.

He was a Lecturer with the School of Information
Technology, Deakin University, Melbourne, VIC,
Australia, from 2013 to 2017. He is currently a
Professor with the School of Cyber Engineering,

Xidian University, Xi’an. His current research interests focus on the con-
tent distribution in vehicular networks, mobile cloud computing, and fog
computing.

Weisong Shi (Fellow, IEEE) received the B.S.
degree in computer engineering from Xidian
University, Xi’an, China, in 1995, and the Ph.D.
degree in computer engineering from the Chinese
Academy of Sciences, Beijing, China, in 2000.

He is a Professor of computer science with
Wayne State University, Detroit, MI, USA, where
he is an Associate Dean for research of College
of Engineering. His research interests include edge
computing, big data systems, computer systems,
energy efficiency computer systems, mobile and con-

nected health, and connected and autonomous driving.
Prof. Shi received the Most Downloaded Paper Award in IEEE Computer;

the National Outstanding Ph.D. Dissertation Award of China in 2002; the NSF
CAREER Award in 2007; the Wayne State University Career Development
Chair Award in 2009; the Charles H. Gershenson Distinguished Faculty
Fellow in 2015; the College of Engineering Faculty Research Excellence
Award in 2016; the Best Paper Award of ICWE’04, IEEE IPDPS’05,
HPCChina’12, IEEE IISWC’12, and IEEE eHealth’17; the Best Paper
Nominee Award of ACM UbiComp’14; and the Best Student Paper Award of
IEEE HealthCom’15. He served as the Program/General Chair/Co-Chair for
MetroCAD’19, MetroCAD’18, ACM/IEEE SEC’18, ACM/IEEE CHASE’18,
ACM/IEEE CHASE’16, IEEE HotWeb’15, and IEEE CSE’11. He is a
Distinguished Scientist of ACM. He is the Editor-in-Chief of Smart Health
(Elsevier), an Associate Editor-in-Chief of IEEE INTERNET COMPUTING, an
Associate Editor of the IEEE TRANSACTIONS ON SERVICES COMPUTING,
the ACM Transactions on Internet of Things, and Computing (Springer), and
the Editor of IEEE Blockchain Newsletter, IEEE INTERNET COMPUTING,
Sustainable Computing: Informatics and Systems, the Journal of Computer
Science and Technology, and the International Journal of Sensor Networks.

Authorized licensed use limited to: XIDIAN UNIVERSITY. Downloaded on November 30,2020 at 06:26:20 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

