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Abstract—The development of autonomous driving poses significant demands on computing resource, which is challenging to

resource-constrained vehicles. To alleviate the issue, Vehicular edge computing (VEC) has been developed to offload real-time

computation tasks from vehicles. However, with multiple vehicles contending for the communication and computation resources at the

same time for different applications, how to efficiently schedule the edge resources toward maximal system welfare represents a

fundamental issue in VEC. This article aims to provide a detailed analysis on the delay and cost of computation offloading for VEC and

minimize the delay and cost from the perspective of multi-objective optimization. Specifically, we first establish an offloading framework

with communication and computation for VEC, where computation tasks with different requirements for computation capability are

considered. To pursue a comprehensive performance improvement during computation offloading, we then formulate a multi-objective

optimization problem to minimize both the delay and cost by jointly considering the offloading decision, allocation of communication and

computation resources. By applying the game theoretic analysis, we propose a particle swarm optimization based computation

offloading (PSOCO) algorithm to obtain the Pareto-optimal solutions to the multi-objective optimization problem. Extensive simulation

results verify that our proposed PSOCO outperforms counterparts. Based on the results, we also present a comprehensive analysis

and discussion on the relationship between delay and cost among the Pareto-optimal solutions.

Index Terms—Vehicular edge computing, computation offloading, multi-objective optimization, Pareto optimality, particle swarm

Ç

1 INTRODUCTION

THE connected and automated vehicles (CAVs) have recently
attracted increasing interests from both academia and

industry [1], [2], [3]. By integrating the computation and com-
munication, CAVs can support a variety of novel vehicular
applications, such as autonomousdriving, precise fleetmanage-
ment and real-time video analytics, which plays a crucial role
toward a safer and more convenient road experience to people
[4]. However, the powerful and resource-hungry applications
always require intensive computation, which poses significant
challenges on resource-constrainedCAVs [5]. For example, 4 TB
of data per day will be generated for the autonomous driving
application according to Intel [6]. For Level-5 autonomous driv-
ing, 500þ TOPS1 of processing capability are required [7].

The Vehicular Edge Computing (VEC) represents a prac-
tical and effective approach to support the large-scale CAVs
[8], [9]. By offloading the computation-intensive tasks to
roadside units (RSUs) equipped with edge servers (RES)
[10], the VEC can significantly save the computation work-
load of vehicles yet reduce the processing latency of the
computation tasks toward more efficient CAV applications.
However, note that an RSU needs to serve multiple vehicles
at the same time [11], how to effectively and economically
use the limited edge resources and provide the maximal
system welfare is a key issue.

A number ofworks have been developed on the allocation
of edge resources in CAVs [1], [5], [10], [12], [13]. In the above
works, the computation offloading is typically formulated as
an optimization problem to either minimize the total proc-
essing delay or energy consumption or maximize the system
utility. Distributed resource allocation methods (such as
game-theoretic approach) or centralized resource allocation
methods using optimization or heuristic algorithms are
developed. More recently, artificial intelligence or deep rein-
forcement learning-based methods are proposed to solve the
problems [14], [15]. The existing works mainly focus on one
performance index. However, facing diverse applications,
different requirements and system performance indexes
during the offloading should be jointly considered. For
example, to reduce delay, more cost would also be produced
if tasks are offloaded to RSU to be processed, including the
communication cost and computation cost. In this regard, it
is imperative for CAVs to consider comprehensive perfor-
mance and achievemulti-objective optimization.

As motivated, we aim to provide a detailed analysis of
the delay and cost of computation offloading for VEC and
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1. TOPS (Tera Operations Per Second) is the unit of processor com-
puting capability, 1 TOPS represents one trillion (1012) operations per
second by the processor.
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minimize the delay and cost from the perspective of multi-
objective optimization. To this goal, we first develop an off-
loading framework with communication and computation
for VEC. Then, we formulate the joint resource allocation
problem as a multiple-objective optimization problem, con-
sidering optimizing both delay and cost during computa-
tion offloading. The formulated problem is also a mixed-
integer non-linear programming (MINLP) problem, which
can not be solved effectively by traditional optimization
methods. By utilizing the concept of Pareto optimality [16],
we propose a particle swarm optimization based computa-
tion offloading (PSOCO) algorithm to solve the multi-objec-
tive optimization problem and obtain the Pareto-optimal
solutions. The contributions of this paper are summarized
as follows.

1) Model: We establish an offloading framework with
communication and computation, where tasks with
different computation capability requirements are
considered. Under the framework, we elaborate on
the detailed delay and cost of computation offloading.

2) Multiple-Objective Optimization: Considering the com-
prehensive performance for CAVs, we formulate a
multi-objective optimization problem to minimize
both the delay and cost, where the offloading deci-
sion, local processing capability, communication
resource, and RES processing capability are jointly
considered.

3) Algorithm Design: To solve the formulated multiple-
objective optimization problem, which is also a
MINLP problem, we introduce the concept of Pareto
optimality. Motivated by the computational intelli-
gence, we propose a particle swarm optimization
based computation offloading (PSOCO) algorithm to
obtain the Pareto-optimal solutions.

4) Validation and Discussion: Based on the real-world
vehicular trace, extensive simulation results are pro-
vided to demonstrate the effectiveness of our pro-
posed PSOCO over counterparts. Based on the
obtained Pareto-optimal solutions, we provide a
comprehensive analysis and discussion on the rela-
tionship between delay and cost among the Pareto-
optimal solutions.

The remainder of this paper is organized as follows. We
present the related work in Section 2. The system model is
depicted in Section 3. The proposed PSOCO algorithm is
presented in Section 4. Extensive simulation results are dis-
cussed in Section 5. We conclude this paper in Section 6.

2 RELATED WORK

In this section, we survey the existing literature on the allo-
cation of communication and computation resources during
computation offloading.

We first present the literature specifically on resource
allocation for vehicles. Du et al. in [5] exploit Lyapunove
optimization theory and propose a DDORV algorithm to
minimize the cost on the vehicle side and the RSU side,
respectively. Considering the mobility of vehicles, Zhang
et al. in [10] propose a predictive-mode transmission scheme
to minimize offloading cost, by focusing on both edge server

selection and transmission management. In [13], they fur-
ther propose to use backup computing servers to assist the
mobile edge computing (MEC) server. And a Stackelberg
game-based method is adopted to maximize the utilities on
both the vehicle side and the MEC server side. To reduce
latency, Liu et al. in [12] propose a distributed computation
offloading scheme through formulating the computation
offloading decision-making problem as a multi-user game.
The Nash equilibrium of the game is further proved.

More recently, some marvellous works adopt machine
learning-based methods in this area. Dai et al. in [1] propose
an architecture that dynamically allocates computation and
caching resources. Based on the architecture, a deep rein-
forcement learning-based method is exploited to maximize
system utility. Zhang et al. in [15] utilize the cognitive radio
(CR) to alleviate the spectrum scarcity problem during com-
putation offloading. To reduce transmission costs among
vehicle-to-infrastructure (V2I) and vehicle-to-vehicle (V2V)
communications, they propose a deep Q-learning method
to schedule the communication modes and resources. Dif-
ferent from traditional works that study communication,
caching, and computation technologies separately, He et al.
in [14] propose an integrated framework that can orches-
trate the three aspects dynamically. To solve the joint opti-
mization problem, they utilize a deep reinforcement
learning method to maximize the reward function, which is
defined as the comprehensive revenue from communica-
tion, caching, and computing.

In addition to literature specifically for vehicles, other
researches on MEC resource allocation are also emerging.
To reduce energy consumption during computation off-
loading, Zhang et al. in [17] propose a three-stage energy-
efficient computation offloading scheme through priority
assignment and type classification. You et al. in [18] consider
the edge cloud with both infinite and finite computation
capacities respectively and the access mode with both
TDMA and OFDMA. Wang et al. in [19] introduce the wire-
less power transfer (WPT) method and propose a unified
MEC-WPT design. Dinh et al. in [20] formulate a distributed
computation offloading problem based on game theory and
propose a model-free reinforcement learning method. To
minimize both delay and energy consumption, Messous
et al. in [21] and Dinh et al. in [22] both transfer the multi-
objective optimization problem into a single-objective opti-
mization problem by weighting coefficients. To minimize
the costs on both the user side and service provider side,
Kim et al. in [23] propose a dual-side optimization algorithm
for MEC. To maximize the total revenue, Wang et al. in [24]
formulate an optimization problem by jointly considering
the offloading decision, resource allocation, and caching in
heterogeneous wireless cellular networks and propose a
distributed algorithm based on alternating direction
method of multipliers (ADMM).

All those works above are marvellous solutions. They
often try to formulate a single-objective optimization prob-
lem such as minimizing delay, cost, or energy consumption.
As for the multi-objective optimization problem, they often
adopt a weighted summethod and transfer it to a single sin-
gle-objective optimization problem. Moreover, most of the
existing computation offloading solutions do not consider
the differential requirements of computation tasks. In light
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of the existing works, we take the research a step further.
Specifically, we establish the computation offloading in a
unified framework with communication and computation,
where tasks with different computation capability require-
ments are considered. We also consider comprehensive sys-
tem performance indexes and formulate a multi-objective
optimization problem to minimize both delay and cost dur-
ing computation offloading. Furthermore, Pareto-optimal
solutions to the problem are obtained through our proposed
PSOCO algorithm.

3 SYSTEM MODEL

This section presents the system model, including the off-
loading framework with communication and computation
for VEC, task local processing model, computation offload-
ing model, and problem formulation. For convenience, we
summarize the major notations in Table 1.

3.1 Offloading Framework With Communication and
Computation for VEC

Fig. 1 shows the offloading framework for VEC. The road is
partitioned into segments, and each is covered by a roadside

unit (RSU) with a roadside edge server (RES). In this paper,
we consider a coverage area of one RSU and a set of N ¼
f1; 2; . . . ; Ng CAVs (hereinafter referred to as vehicle for
short). Various task data would be generated from the on-
board applications of vehicles for entertainment (e.g., face
recognition and augmented reality) or safety (e.g., LiDAR
and high-definition camera) purpose [25]. We denote the
number of task types by K. The RSU can provide powerful
computing capability due to the deployed RES. Each vehicle
n (n 2 N ) has a computation task Tn to be processed. We
use four items to describe Tn as Tn , fDn; gn; cn; Ing, where
Dn stands for the input data size of Tn, gn is a ratio of output
data size to input data size, cn stands for the processing den-
sity (in CPU cycles/bit) of the task, and In is an indicator
that stands for the type of task Tn, and different type of tasks
have different processing densities. We use W1 and W2 to
represent the total bandwidths of uplink and downlink of
V2I channels, respectively. By leveraging the non-orthogo-
nal multiple access (NOMA) technique, which has been
considered as a key enabling technique for 5G networks
due to its potentially superior spectral efficiency [26], the
communication resource is divided into resource blocks
(RBs),2 expressed as B1 ¼ f1; 2; . . . ; Lg for uplink and B2 ¼
f1; 2; . . . ;Mg for downlink. It is noting that there is a control
center at each RSU, which gathers task processing require-
ments from vehicles while scheduling the communication
and computation resources allocation through a dedicated
control channel [15].

For ease of analysis, we consider the system to be quasi-
static so that the topology and wireless channels keep
unchanged during the task processing period [5]. We define
�n (0 � �n � 1) as the offloading decision variable of task
Tn, which stands for the ratio of the amount of bits offloaded
to RSU to Dn. Accordingly, the amount of bits that would
be offloaded to RSU is �nDn bits and that would be proc-
essed locally is ð1� �nÞDn bits. In the following, we will
elaborate on the local processing part and offloading part,
respectively.

3.2 Task Processed Locally

We use fln (0 � fl
n � Fn) to denote the processing capability

(in CPU cycles/s) at vehicle n assigned for local computa-
tion, where Fn is the maximum processing capability of
vehicle n. The power consumption of vehicle n is then

TABLE 1
Major Notations

Notation Explanation

In An indicator indicating the type of task Tn

W1,W2 Bandwidths of uplink and downlink channels

kn, ke Coefficients related to power in CAVs and RES

Dn Data size of task Tn

dn Distance between vehicle n and RSU

al
n, b

m
n Indicators indicating weather RBs l andm is

allocated to CAV n

K Number of task types

�n Offloading decision variable of task Tn

# Path loss exponent

hl
n, h

m
n Power gains between CAV n and RSU over RBs

l and RBm

r Price for RSU to process each unit CPU cycle

m, n Price of transmission per bit data in uplink and
downlink

fl
n, Fn Processing capability for task Tn and maximum

processing capability of CAV n

fe
n, Fe Processing capability for task Tn and maximum

processing capability of RES

cn Processing density of task Tn

gn Ratio of the output data size to the input data
size of task Tn

N ,N Set and number of CAVs

B1, L Set and number of uplink RBs

B2,M Set and number of downlink RBs

pln, p
m
n Uplink and downlink transmission power

between CAV n and RSU over RBs l andm

sl, sm White Gaussian noise powers over RBs l andm

Fig. 1. Offloading framework for VEC.

2. This can be easily achieved by integrating network function virtu-
alization (NFV) and software defined networking (SDN) technologies,
by which various radio spectrum resources can be abstracted and sliced
to the RSUs and then be allocated to CAVs by each RSU [27].
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calculated as pln ¼ knðflnÞ3, where kn is a coefficient related
to power in CAV n [28]. For the ð1� �nÞDn-bits of task Tn,

it’s local processing time is formulated as tln ¼ cn

�
1��n

�
Dn

fln
.

Accordingly, the energy consumption of vehicle n for proc-
essing the local part of task Tn is then formulated as
El

n ¼ kncn
�
1� �n

�
Dn

�
fln
�2
.

3.3 Task Offloaded to RSU

For the offloaded part of task Tn, there exist three proce-
dures to accomplish the task computing, that is, �nDn-bits
of Tn should be first transmitted to RSU through V2I chan-
nels, then computed by RSU, and finally, RSU will return
the result to vehicle n.

3.3.1 Task Transmission

We denote al
n (l 2 B1) as the uplink binary RB allocation

indicator, where al
n ¼ 1 means l is allocated to vehicle n,

and al
n ¼ 0 otherwise. We denote pln as the uplink transmis-

sion power of vehicle n over RB l, hl
n as the power gain

between vehicle n and RSU over RB l. Accordingly, the
uplink data rate of vehicle n over RB l after performing
successive interference cancellation (SIC)3 can be formu-

lated as rln ¼ W1
L log2ð1þ alnp

l
nh

l
n

zlnþslðdnÞ#
Þ, where sl denotes the

White Gaussian noise power over RB l [30], zln ¼P
i2N ;i6¼n;hln <hl

i
al
ip

l
ih

l
i is the interference signal power from

other vehicles over RB l, dn and # are the distance from vehi-
cle n to RSU and the path loss exponent, respectively.
Through SIC technology, the interference signal from vehi-
cle i 2 N n fng will be decoded and removed at the RSU
side if hl

i < hl
n [31]. The uplink data rate from vehicle n is

then formulated as Rn
1 ¼Pl2B1

rln. Accordingly, the uplink
transmission delay and energy consumption for offloading
�nDn-bits of task Tn are obtained by tupn ¼ �nDn

Rn
1

and Eup
n ¼P

l2B1
plnt

up
n , respectively.

3.3.2 Task Computed by RSU

After �nDn-bits of task Tn is transmitted from vehicle n to
RSU, it will be computed by the deployed RES. We use fe

n

(0 � fen � Fe) to denote the assigned processing capability
(in CPU cycles/s) from RES, where Fe denotes the maxi-
mum processing capability of RES. The power consumption
of RES is then calculated as pen ¼ keðfe

nÞ3, where ke is a coeffi-
cient related to power in RES. For the �nDn-bits of task Tn,
it’s processing time is expressed as ten ¼ cn�nDn

fen
. And the

energy consumption of RES for computing the offloaded
part of task Tn is expressed as Ee

n ¼ kecn�nDnðfe
nÞ2.

3.3.3 Result Return

We denote bm
n (m 2 B2) as the downlink binary RB alloca-

tion indicator, where bm
n ¼ 1 means RB m is allocated to

vehicle n, and bm
n ¼ 0 otherwise. We denote pmn as the down-

link transmission power of RSU sending back the computa-
tion result to vehicle n over RB m, hm

n as the power gain

between vehicle n and RSU over RB m. Accordingly, the
downlink data rate of vehicle n for result return from RSU

over RB m can be formulated as rmn ¼ W2
M log2ð1þ bmn pmn hmn

zmn þsmðdnÞ#
Þ,

where sm denotes the White Gaussian noise power over RB
m, zmn ¼Pj2N ;j6¼n;hmn <hm

j
am
j p

m
j h

m
j denotes the interference

signal power from other vehicles over RB m. The downlink
data rate from RSU is then formulated as Rn

2 ¼Pm2B2
rmn .

Accordingly, the downlink transmission delay and energy
consumption for result return can be obtained by tdn ¼
gn�nDn

Rn
2

and Ed
n ¼Pm2B2

pmn t
d
n, respectively.

Therefore, the total latency and energy consumption for
the offloaded part of task Tn are expressed as

toffn ¼ tupn þ ten þ tdn ¼ �nDn
Rn
1

þ cn�nDn
fen

þ gn�nDn
Rn
2

; (1)

and

Eoff
n ¼ Eup

n þEe
n þ Ed

n

¼
XL
l¼1

plnt
up
n þ kecn�nDn

�
fen
�2 þXM

m¼1

pmn t
d
n;

(2)

respectively.

3.4 Problem Formulation

For a given task Tn, delay and cost would be produced to
process it. For the delay aspect, it is determined by both the
delays of processing the local part and the offloaded part.
Accordingly, the total delay of processing Tn can be
expressed as tn ¼ maxftln; toffn g. For the cost part, it is also
determined by both the cost of processing the local part and
the offloaded part. The former only includes the energy con-
sumption for local computing while the latter includes three
aspects: a) the energy consumption of transmitting and
computing task Tn; b) the communication cost for using
RBs; and c) the computing cost for RES computing the off-
loaded part of task Tn. Accordingly, the cost for processing
task Tn can be expressed as

Un ¼ Ul
n þ Uoff

n

¼ �El
n þ �

�
Eup

n þ Ee
n þEd

n

�
þ m�nDn þ ngn�nDn þ rcn�nDn;

(3)

where � is a weighting coefficient indicating the energy con-
sumption cost of one unit energy during task computing
and transmission [23], m and n are coefficient s indicating
the communication cost required to transmit one unit of
task data by using uplink and downlink RBs, respectively.
And r is a coefficient indicating the computing cost to exe-
cute one CPU cycle.

In this paper, we consider minimizing the delay and cost
of all vehicles under the computation capability and commu-
nication resource limitations. To this end, the offloading
decision variable, the local processing capability, the RES
processing capability, the uplink binary RB allocation indica-
tor, and the downlink binary RB allocation indicator need to
be optimized.We denote �� ¼ f�1; . . . ; �Ng, ffl ¼ ffl

1; . . . ; f
l
Ng,

ffe ¼ ffe
1 ; . . . ; f

e
Ng, aa ¼ fa1

1; . . . ;a
L
1 ; . . . ;a

1
N; . . . ;a

L
Ng, bb ¼

3. Through superposition coding of signal at the vehicle side and
retrieving it at the RSU side, the SIC method in NOMA supports simul-
taneous transmission of multiple signals on one RB, which can improve
the spectral efficiency [29].
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fb1
1; . . . ; b

M
1 ; . . . ;b1

N; . . . ;b
M
N g. Thus, the multi-objective opti-

mization problem is formulated as

min
f��;ffl;ffeaa;bbg

t ¼
XN
n¼1

tn

min
f��;ffl;ffeaa;bbg

U ¼
XN
n¼1

Un

s.t.

1-C1 : 0 � �n � 1; 8n 2 N ;

1-C2 : 0 � fln � Fn; 8n 2 N ;

1-C3 : 0 � fe
n � Fe; 8n 2 N ;

1-C4 :
XN
n¼1

fe
n � Fe;

1-C5 : al
n;b

m
n 2 f0; 1g; 8n 2 N ;

l 2 B1;m 2 B2;

1-C6 :
XN
n¼1

al
n � 1;

XN
n¼1

bm
n � 1;

8l 2 B1;m 2 B2;

(4)

where (1-C1) is the constrains on offloading decision var-
iable; (1-C2), (1-C3) and (1-C4) are the processing capa-
bility constraints for vehicles and RES, where Fe denotes
the maximum processing capability of RES at the RSU;
(1-C5) are the binary constrains on uplink and downlink
RB allocation indicators; (1-C6) ensures that each uplink
RB and each downlink RB can be allocated to at most
one vehicle.

Since the delay and energy consumption in downlink is
much less than in uplink for most traditional computation-
intensive tasks [18], [32]. Accordingly, for simplicity, we
ignore the delay and energy consumption in downlink.
Then Formulas (1) and (2) can be rewritten as

toffn ¼ tupn þ ten ¼ �nDn
Rn
1

þ cn�nDn
fen

; (5)

and

Eoff
n ¼ Eup

n þ Ee
n ¼

XL
l¼1

plnt
up
n þ kecn�nDn

�
fe
n

�2
; (6)

respectively. Accordingly, the problem in Formula (4) can
be reformulated as

min
f��;aa;ffl;ffeg

t ¼
XN
n¼1

max

(
cn
�
1� �n

�
Dn

fl
n

; �nDn

�
1

Rn
1

þ cn
fe
n

�)

min
f��;aa;ffl;ffeg

U ¼
XN
n¼1

�Dn

(
kncn

�
1� �n

��
fl
n

�2 þ �n

PL
l¼1 p

l
n

Rn
1

þ kecn�n

�
fe
n

�2)þ �nDn

(
mþ ngn þ rcn

)

s.t. 2-C1 : 0 � �n � 1; 8n 2 N ;

2-C2 : 0 � fln � Fn; 8n 2 N ;

2-C3 : 0 � fen � Fe; 8n 2 N ;

2-C4 :
XN
n¼1

fe
n � Fe;

2-C5 : al
n 2 f0; 1g; 8n 2 N ; l 2 B1;

2-C6 :
XN
n¼1

al
n � 1; 8l 2 B1;

(7)

where Rn
1 denotes the uplink data rate from from vehicle n

and is formulated as

Rn
1 ¼

XL
l¼1

W1

L
log2

 
1þ al

np
l
nh

l
nP

i2N ;i 6¼nhln <hl
i
al
ip

l
ih

l
i þ sl

�
dn
�#
!
:

(8)

4 MULTI-OBJECTIVE OPTIMIZATION AND

COMPUTATION OFFLOADING ALGORITHM

4.1 Multi-Objective and Pareto Optimization

The purpose of Formula (7) is to minimize the cost and
delay simultaneously, which is a multi-objective optimiza-
tion problem. The improvement in the performance of one
objective may cause a decrease in the performance of
another objective during the optimization. Therefore, the
two objectives cannot achieve their optimal values at the
same time, a trade-off and compromise should be obtained
between them. There is no optimal solution to Formula (7)
but a set of optimal solutions, the elements of which are
called Pareto-optimal solutions or non-dominated solutions
[33].

Definition 1. Consider an optimization of a multi-criteria deci-
sion-making problem aiming to minimize k objective functions
fqðxÞ (q ¼ 1; 2; . . . ; k), where x ¼ ½x1; x2; . . . ; xi�T is a vector
of i decision variables. The set of all feasible solutions is denoted
as V. Assume S1 2 V and S2 2 V, it is said that solution S1

dominates the other solution S2 (denoted by S1 � S2), if and
only if 8q : fqðxS1Þ � fqðxS2Þ and 9k : fqðxS1Þ < fqðxS2Þ,
where fqðxÞ are the objective functions and xS1 , xS2 are vectors
of i variables representing S1 and S1, respectively [34].

Definition 2. All feasible solutions in search space V, which are
not dominated (see Definition 1) by any other solution in the
search space are called Pareto-optimal solutions. They form the
so-called Pareto-optimal set (or Pareto-optimal front).

Based on Definitions 1 and 2, this paper aims to find the
Pareto-optimal solutions for the formulated delay and cost
minimization problem in Formula (7). Since the problem
formulated in Formula (7) is a MINLP problem, it is hard to
find the Pareto-optimal solutions through traditional opti-
mization methods [35]. Inspired by the swarm intelligence,
we resort to the particle swarm optimization (PSO) [36]
method and propose a PSO based computation offloading
(PSOCO) algorithm. In the following, we will give a brief
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introduction about PSO and elaborate on the PSOCO
algorithm.

4.2 Particle Swarm Optimization

As a computational intelligence method, PSO is inspired by
the swarm behavior of birds to search for food, in which
each bird changes its search pattern by learning from its
own and others’ experience [33]. PSO has been widely used
in optimization problems in various fields due to its good
ability to solve complex problems in multi-dimensional
complex space [37]. Compared with other swarm intelli-
gence algorithms, PSO has fewer parameters and is very
suitable for multi-objective optimization problems [38].
More importantly, the PSO has a faster convergence speed
than other population-based stochastic optimization meth-
ods (e.g., genetic algorithms) [39]. To describe the proposed
PSOCO explicitly, we first introduce some terms about PSO.

1) Particle: The search space for solving optimization
problems is compared to the flight space of birds
during the foraging behavior, and each bird is
abstracted into a particle without mass or volume. In
this paper, a particle denotes a candidate solution of
Formula (7).

2) Particle swarm: A particle swarm consists of several
particles, and the number of particles denotes the
size of the particle swarm.

3) Solution encoding: Solution encoding means how to
represent the variables to be solved in Formula (7)
by the particle. In this paper, we adopt the real
encoding method.

4) Fitness: Fitness indicates the suitability of a particle
for the solution and is presented by the objective
function value. In this paper, fitness means the opti-
mization objectives in Formula (7), i.e., the delay
and cost.

5) Fitness evaluation: Fitness evaluation represents to
calculate the fitness value (i.e., the value of the two
objectives in Formula (7)) for each particle.

6) Swarm updating: Based on the best positions of indi-
viduals and swarm, particles update their speeds and
positions. The swarm updating is completed after all
particles are updated. Through swarm updating, the
evolution of candidate solutions can be achieved.

7) Boundary condition processing: When the position and
speed exceed the set value, the boundary condition
processing can restrict particle’s position to a feasible
space, which avoids the expansion and divergence of
the swam, and also avoids the blindly searching in a
large range, thus improving the search efficiency.

4.3 Proposed PSOCO Algorithm

1) Initialization: Initialize iteration g ¼ 0 andparticle swarm
SðgÞ randomly as SðgÞ ¼ fS1ðgÞ; S2ðgÞ; . . . ; SsðgÞg,
where s denotes the swarm size, SiðgÞ (1 � i � s)
denotes a particle. Specifically, SiðgÞ is represented by a
set of ��, aa, ffl and ffe, which can be defined as an array
SiðgÞ ¼ ½��;aa; ffl; ffe�d, where d is the size of the array
and is defined as d ¼ 3�N þ L. In each SiðgÞ, the size
of ��, ffl and ffe is N , the size of aa is L. And �� is binary

coded, aa, ffl and ffe are real coded. It isworth noting that
the elements in aa are different from that in constraints
(3-C5) and (3-C6). Here, the aa is defined as aa ¼ faljl 2
B1; 1 � al � Ng, where al is an integer to indicate the
vehiclewhich obtains the RB l.

In addition, we define four memory units Pindv,
Oindv,Pglb andOglb to represent the best positions of indi-
viduals, the best objectives of individuals, the best posi-
tions of swarm, and the best objectives of swarm,
respectively. Specifically, Pindv and Oindv are expressed
by two cell arrays with the size of s, where each element
in the two cell arrays represents the Pareto-optimal set
and corresponding optimal objectives of a particle,
respectively.Pindv andOindv are formulated as

Pindv ¼
n
Pindv
1 ; P indv

2 ; . . . ; P indv
s

o
; (9)

Oindv ¼
n
Oindv

1 ; Oindv
2 ; . . . ; Oindv

s

o
: (10)

Pglb and Oglb are two arrays, where each element in
the two arrays represents one of the optimal Pareto-
optimal set and corresponding optimal objectives of
the swarm, respectively. For the sake of iteration, we
assign the value of the initialized SðgÞ to Pindv, and
randomly select an element from Pindv and assign it
to Pglb. For the initialization of Oindv and Oglb, we
assign some values that are big enough (e.g., infinity)
to them. We also initialize each particle’s speed Vi as
Vi ¼ fvi;1; vi;2; . . . ; vi;dg; 81 � i � s.

2) Mapping of particle representation to optimization varia-
bles: This step is also called solution encoding. Map
each element valuel (1 � l � 3�N þ L) of each SiðgÞ
in the particle swarm to the variables to be solved in
Formula (7). Specifically, since the elements in aa, ffl

and ffe are real coded, they can directly represent the
variables of an, f

l
n and fe

n (n 2 N ). For the element al

in aa, the corresponding relationship with al
n in For-

mula (7) is expressed as

al
n ¼ 1; al ¼ n; 8l 2 B1; n 2 N

0; otherwise

�
: (11)

3) Fitness evaluation: Since we aim to minimize the cost
and delay simultaneously, we regard both the cost
and delay as the fitness functions. In order to find
the Pareto-optimal solutions, we first calculate the
fitness of each particle SiðgÞ (1 � i � s) in SðgÞ. Spe-
cifically, we use the variable values from the particle
representation in step 2) to calculate the objectives of
delay and cost in Formula (7), and obtained the fit-
ness values Odelay

g;i (1 � i � s) and Ocost
g;i , we use Og;i to

represent the pair of objectives. It can be defined as
Og;i ¼ fOdelay

g;i ; Ocost
g;i g.

4) Recording the best individuals and swarm:After the two
fitness values of each particle SiðgÞ are obtained by
step 3), we then compare them with the optimal
objectives Oindv

i and Oglb, respectively.
For the recording of the best individuals, we first

calculate the size of Pindv
i by sindvi , i.e., the number of

optimal objectives of particle SiðgÞ. Then, for any
Pareto-optimal solution Pindv

i;k (1 � k � sindvi ) in Pindv
i
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and its corresponding optimal objective Oindv
i;k in

Oindv
i , we judge whether SiðgÞ (1 � i � s) is domi-

nated by Pindv
i;k (1 � k � sindvi ) according to Og;i and

Oindv
i;k . Based on Definition 1, if 9k : Pindv

i;k � SiðgÞ, then
the current solution SiðgÞ is not the Pareto-optimal
solution; otherwise (i.e., SiðgÞ is not dominated by
any solution Pindv

i;k (1 � k � sindvi ) in Pindv
i ), add SiðgÞ

to the Pareto-optimal set Pindv
i and add Og;i to opti-

mal objectives Oindv
i .

For the recording of the best swarm, we first cal-
culate the size of Pglb by sglb, then for any Pareto-opti-
mal solution Pglb

& (1 � & � sglb) in Pglb and its
corresponding optimal objective Oglb

& in Oglb, judge
whether SiðgÞ (1 � i � s) is dominated by Pglb

&

according to Og;i and Oglb
& . Based on Definition 1, if

9& : Pglb
& � SiðgÞ, then the current solution SiðgÞ is

not the Pareto-optimal solution; otherwise (i.e., SiðgÞ
is not dominated by any solution Pglb

& (1 � & � sglb)
in Pglb), add SiðgÞ to the Pareto-optimal set Pglb and
add Og;i to optimal objectives Oglb.

5) Judgement of termination condition: If reach the termi-
nation iteration gmax, map the particle representation
in Pareto-optimal set Pglb to the variables in Formula
(7); Otherwise, go to step 6).

Algorithm 1. Particle Swarm Optimization Based Com-
putation Offloading (PSOCO) Algorithm

1: Initialize SðgÞ, Pindv,Oindv, Pglb,Oglb; Vi (1 � i � s)
2: for iteration g ¼ 0; 1; 2; . . . ; gmax:
3: for each particle:
4: Map SiðgÞ to the variables to be solved in Formula (7)
5: Calculate the fitness values Odelay

g;i and Ocost
g;i according

to Formula (7), and define Og;i ¼ fOdelay
g;i ; Ocost

g;i g
6: Calculate the size of Pindv

i by sindvi

7: Calculate the size of Pglb by sglb

8: for each Pareto-optimal solution Pindv
i;k in Pindv

i :
9: if SiðgÞ is not dominated by Pindv

i;k then
10: Add SiðgÞ to set Pindv

i

11: Add Og;i to set Oindv
i

12: end for
13: for each Pareto-optimal solution Pglb

& in Pglb:

14: if SiðgÞ is not dominated by Pglb
& then

15: Add SiðgÞ to set Pglb

16: Add Og;i to set Oglb

17: end for
18: Randomly choose one Pareto-optimal solution from Pindv

i

andPglb, denoted as Pindv
b ðgÞ andPglb

b , respectively
19: Each particle updates its speed and position according

to Formulas (16) and (17)
20: for each element si;�ðgÞ in SiðgÞ:
21: if si;�ðgÞ is beyond the position ranges then
22: Re-initialize si;�ðgÞ
23: end for
24: end for

6) Position and speed updating of individuals: This step is
also called swarm updating. Since there are multiple
Pareto-optimal solutions of a particle in Pindv

i

(1 � i � s) and Pareto-optimal solutions of the
swarm in Pglb, we select randomly select one Pareto-

optimal solution from each of Pindv
i and Pglb, denoted

by Pindv
b ðgÞ and Pglb

b ðgÞ, respectively. Now, for each
particle, we have the current position SiðgÞ, the
current speed ViðgÞ, the randomly selected Pareto-
optimal solutions Pindv

b ðgÞ and Pglb
b ðgÞ, formulated as

SiðgÞ ¼
n
si;1ðgÞ; si;2ðgÞ; . . . ; si;dðgÞ

o
; (12)

ViðgÞ ¼
n
vi;1ðgÞ; vi;2ðgÞ; . . . ; vi;dðgÞ

o
; (13)

Pindv
b ðgÞ ¼

n
pindvb;1 ðgÞ; pindvb;2 ðgÞ; . . . ; pindvb;d ðgÞ

o
; (14)

Pglb
b ðgÞ ¼

n
pglbb;1ðgÞ; pglbb;2ðgÞ; . . . ; pglbb;dðgÞ

o
: (15)

Then, each particle updates speed and position as

vi;�ðgþ 1Þ ¼ vvi;�ðgÞ þ d1u1ðpindvb;� ðgÞ � si;�ðgÞÞ
þ d2u2ðpglbb;� ðgÞ � si;�ðgÞÞ; 8� 2 f1; . . . ; dg;

(16)

si;�ðgþ 1Þ ¼ si;�ðgÞ þ vi;�ðgþ 1Þ; 8� 2 f1; . . . ; dg;
(17)

where v denotes an inertia weight factor between 0.8
and 1.2, and can be dynamically adjusted according
to the linear decrement strategy, shown as

v ¼ vmax � ðvmax � vminÞ � g

gmax
: (18)

And d1 and d2 denote learning factor, also named
acceleration constant. u1 and u1 are two random
numbers uniformly distributed between 0 and 1.
After step 6), the swarm is denoted as

S0ðgÞ ¼
n
S0
1ðgÞ; S0

2ðgÞ; . . . ; S0
sðgÞ

o
: (19)

7) Boundary condition processing: For each particle, judge
whether si;�ðgþ 1Þ is beyond the position ranges
defined by constrains (3-C1)�(3-C6) in Formula (7).
If si;�ðgþ 1Þ is beyond the position ranges, re-initial-
ize it according to step 1). After step 7), the swarm is
denoted as

S00ðgÞ ¼
n
S00
1 ðgÞ; S00

2 ðgÞ; . . . ; S00
s ðgÞ

o
: (20)

Then update the iterative number g :¼ gþ 1 and
return to step 2).

We summarize the PSOCO algorithm in Algorithm 1. It is
worth noting that the PSOCO algorithm can be also
applied to other distributed RUSs and edge servers. It is
also worth noting that vehicles may enter and leave the
coverage of the RSU during task offloading, leading to a
failed result reception from RSU and a higher delay and
cost. To address this issue, we can first adopt a duration
prediction method to evaluate the link duration between
vehicles and RSU based on the current position and speed
of vehicles, and the position of RSU. Then, a threshold
duration is set, guaranteeing the task processing result can
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be returned before the vehicle leaves the coverage of the
RSU. Only the vehicles whose predicted link duration is
longer than the threshold duration can participate in the
task offloading process. Another way is utilizing the coop-
eration between adjacent RSUs. The remaining task data
can be offloaded to the next RSU if the vehicle leaves the
coverage of the current RSU during task offloading, or can
be migrated from the current RSU to the next RSU if the
vehicle leaves the coverage of the current RSU during task
processing. Also, the vehicles that will enter the coverage
of the RSU during the process of self-learning of a vehicle
can also participate in the task offloading process in the
current RSU. For simplicity, in this paper, we assume that
all vehicles can receive the results before they leave the
coverage of the RSU.

5 SIMULATION RESULTS AND DISCUSSIONS

5.1 Simulation Setup

We consider a two-way two-lane road with a length of
1000 m. The width of each lane is 4 m. And one RSU is
deployed in the middle of the roadside and its coverage
radius is 500 m. Vehicles that are on two different lanes
are keeping moving back and forth along their lanes. For
the behavior of vehicles, we use part of the GAIA Open
Dataset containing mobility traces of DiDi Express in
Xi’an China [40]. We randomly choose 20 � 60 traces in
our simulation. The data size is randomly distributed
between 0.1 and 1 MB. The processing density is selected
from f10; 100; 1000g for type 1, 2, and 3 tasks, respec-
tively. We present the parameters setting in Table 2.

For the simulation environment, we use a GPU-based
server, where the CPU is Intel Xeno(R) E5-2690v4 with
64 GB memory. The software environment is Python 3.7 on
Ubuntu16.04.6 LTS.

5.2 Simulation Results

We consider the following schemes as benchmarks to evalu-
ate our proposed PSOCO: 1) Offload-Comp-Only (OCO),
where all vehicles offload their computation tasks to RSU to
be processed; 2) Local-Comp-Only (LCO), where all
vehicles compute their computation tasks locally; 3) GACO,
a genetic algorithm-based computation offloading scheme.

5.2.1 Effectiveness

We first conduct simulations to verify the effectiveness of
the proposed PSOCO. As a comparison, the GACO scheme
is evaluated under the same conditions. In this set of

simulations, we set N ¼ 20. As shown in Fig. 2, we give the
results for delay and cost varying with iterations. It is worth
noting that we optimize the two objectives separately. From
the figure, we can see that both PSOCO and GACO can con-
verge to optimal solutions for delay and cost. Specifically,
for PSOCO, its delay converges at about the 300th iteration
and its cost converges at the 180th iteration. However, for
the GACO scheme, its delay converges at about the 350th
iteration and its cost converges at about the 310th iteration.
Both results verify the effectiveness of our proposed PSOCO
and show that PSOCO has a faster convergence than the
benchmark GACO.

TABLE 2
Simulation Parameters

Description Parameter Value

Coefficients related to power in
vehicle and RSU

kn, ke 10�27, 10�29

Downlink bandwidth W2 10 MHz

Downlink cost coefficient n 0:5� 10�10

Cost for RES processing task data r 3� 10�10

Energy consumption cost coefficient � 2:44� 10�4

Indicator of task type In f1; 2; 3g
Inertia weight factor v 0.4 � 0.8

Input data size Dn 0:1 � 1MB

Learning factor u1, u2 1.5

Maximal local and RES processing
capability

Fn, Fe f1:4; 3g � 109

Number of vehicles N 20 � 60

Number of uplink RBs L 10�N

Number of downlink RBs M 10�N

Processing density of task Tn cn f10; 100; 1000g
Power gains hl

n, h
m
n 1

Path loss exponent # 4

Ratio of output to input data size gn 0:05 � 0:2

Swarm size s 200

Transmission power over RB l pln 1 W

Transmission power over RBm pmn 2 W

Uplink bandwidth W1 10 MHz

Uplink cost coefficient m 1:16� 10�10

White Gaussian noise powers sl, sm �100 dBm

Fig. 2. Convergence of delay and cost.
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5.2.2 Pareto-Optimal Solutions

To find the Pareto-optimal solutions and the Pareto-optimal
front, we implement the simulations with different number
of vehicles in Figs. 3 and 5.

The simulation results of OCO are presented in the top of
Figs. 3 and 5a. It can be easily observed from the top of
Fig. 3 that the objectives for the delay and the cost run in the
opposite direction, which means that the improvement of
one objective may lead to the decline of the other. This is
because that more communication and computation resour-
ces will be allocated to a certain task for transmitting and
processing if a lower delay is preferred, which results in a
higher cost for the utilization of communication and com-
putation resources, and vice versa. When putting all five
curves in the top of Fig. 3 together, we depict Fig. 5a. It is
shown that both the delay and cost increase with the
increase of N . This is because more vehicles lead to more
tasks to be processed, which further results in higher delay
and cost due to the limited communication and computa-
tion resources of RSU.

The simulation results of LCO are presented in the middle
of Figs. 3 and 5b. It is shown from themiddle of Fig. 3 that the
objectives for the delay and the cost also run in the opposite
direction. This is because more computing resources of a cer-
tain vehicle will be allocated to process its task if a lower
delay is preferred, which will result in a higher cost for the
utilization of computing resources, and vice versa.When put-
ting all five curves in the middle of Fig. 3 together, we depict
Fig. 5b. It is shown that both the delay and cost increase with
the increase ofN . The reason is that the delay and cost are the

total delays and total costs of all vehicles. The increase of N
will increase the total delays and total costs.

The simulation results of our proposed PSOCO are pre-
sented in the bottom of Figs. 3 and 5c. It can be easily
observed that the objectives for the delay and the cost also
run in the opposite direction. For example, in the second
figure in the bottom of Fig. 3, among the Pareto-optimal-sol-
utions, there is a solution with a delay of about 40 s and the
cost of about 1.8. If we prefer a lower delay solution, we
may find a solution along the Pareto-optimal front curve
with a delay of about 20 s, however, the cost of the solution
is increased to about 7. The reason is that more tasks will be
offloaded to RSU for processing to reduce the processing
time due to the higher processing capability of RSU, which
may lead to a cost increase due to the cost of uplink commu-
nication resource and the cost for RSU to process tasks.
When putting all five curves in the bottom of Fig. 3 together,
we depict Fig. 5c. It is shown that both the delay and cost
increase with the increase of N . The reason is that the com-
munication resource and computing resource of RSU within
one road segment are limited, each vehicle will be allocated
less communication and computation resources from RSU
with the increase of N . Therefore, a higher delay and hence
a higher cost will be consumed to complete the tasks of
vehicles.

What’s more, we depict Fig. 4 to show the performance
comparison among OCO, LCO, and PSOCO under different
number of vehicles. It is shown that the Pareto-optimal solu-
tions among OCO, LCO, and PSOCO vary greatly. For
OCO, the delay is very low while the cost is very high. This

Fig. 3. Pareto-optimal solutions and Pareto-optimal front of OCO, LCO, and PSOCO under different number of vehicles.

Fig. 4. Comparison of Pareto-optimal solutions among OCO, LCO, and PSOCO under different number of vehicles.
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is because the cost of uplink communication resource and
the cost for RSU to process tasks are high. For LCO, the cost
is very low while the delay is very high. This is because the
limited processing capability of vehicles will result in a
severe delay for some compute-intensive tasks since all
tasks are processed locally. Different from the OCO and
LCO, the tasks can be partially offloaded to RSU in our pro-
posed PSOCO, which jointly allocates the communication
and computation resources of vehicles and RSU to obtain
the optimal delay and cost. Moreover, the delay and cost of
PSOCO are between that of OCO and LCO. A trade-off
between delay and cost is also obtained, which can guide
the allocation of communication and computation resources
for different types of tasks.

5.2.3 Allocation of Communication and Computation

To elaborate on the communication and computation
resource allocation, we select two Pareto-optimal solutions,
i.e., A and B (hereinafter referred to as ParetoA and ParetoB,
respectively) from Fig. 5c. We first depict the task attribute
distribution about cn and gn in Fig. 6. It is shown that 4 tasks
are with the processing density of 1000 cycles/bit, 7 tasks
are with the processing density of 100 cycles/bit, 9 tasks are
with the processing density of 10 cycles/bit. And all gn of
tasks are randomly distributed between 0 and 0.2. Based on
the 20 tasks, we present in the following how the communi-
cation and computation resources are allocated under Par-
eto-optimal solutions A and B.

1) Allocation of offloading decision �n: For the accuracy of
the statistical results, we evaluate the average offload-
ing decision, which is defined as the average �n of
tasks with the same processing density. Fig. 7 shows

that the average offloading decision increases with
the increase of processing density. This is because a
higher processing density needs more computing
cycles, which results in that more task data bits
should be offloaded to RSU for processing. More
importantly, the average offloading decision of
ParetoA is higher than that of ParetoB, which reflects
the preference for delay objective of ParetoA. A lower
delay is realized by offloading more task data bits to
RSU since the higher computing capability of RSU.

2) Allocation of local processing capability fl
n: For the accu-

racy of the statistical results, we evaluate the average
local processing capability, which is defined as the
average fl

n of tasks with the same processing density.
It can be shown from Fig. 8 that the average local
processing capability increases with the increase of
processing density. This is because more local proc-
essing capabilities should be allocated to process

Fig. 5. Pareto-optimal solutions and Pareto-optimal front under different schemes.

Fig. 6. Task attribute distribution about processing density and ratio of
output to input data size.

Fig. 7. Average offloading decision under different processing densities.

Fig. 8. Average local processing capability under different processing
densities.
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more task data bits due to the increased processing
density to obtain an optimal delay. And the average
local processing capability of ParetoB is higher than
that of ParetoA. The reason is that more task data
bits are processed locally for ParetoB, with the result
that more local processing capabilities are allocated
to process the tasks.

3) Allocation of communication resource: We evaluate the
allocation of communication resource by the allo-
cated uplink communication resource. As shown in
Fig. 9, the horizontal axis and vertical axis denote the
offloaded data size and allocated uplink communica-
tion resource, respectively. The offloaded data size
refers to the size of the data that will be offloaded to
RSU for processing. It shows that the allocated
uplink communication resource increases with the
increase of offloaded data size. What’s more, less
communication resource is allocated to transmit off-
loading tasks for ParetoA when the offloaded data
size is small. When the offloaded data size reaches a
threshold, as point C in Fig. 9, the allocated commu-
nication resource of ParetoA is higher than that of
ParetoB. This is because the local computing capabil-
ities of vehicles are enough to process the tasks
when data size is small. Offloading tasks may cause
extra delay, which is against the purpose of ParetoA.
With the increase of the offloaded data size, more
communication resource is allocated to transmit the
tasks to RSU. This is because the RES enabled RSU
has powerful computing capability toward a lower
processing delay, which is consistent with the pur-
pose of ParetoA.

4) Allocation of RES computation resource: Fig. 10 reflects
the relationship between the allocated RES process-
ing capability and the computing amount of off-
loaded tasks for Pareto-optimal solutions A and B. It
is shown that the allocated RES processing capability
increases with the increase of the computing amount
of offloaded task. And the allocated RES processing
capability of ParetoA is higher than that of ParetoB.
The reason is that the purpose of ParetoA is obtain-
ing a lower delay in task processing, which needs
more RES processing capabilities to achieve this
goal. On the contrary, since the ParetoB prefers a
low cost, less RES processing capabilities should be
allocated due to the high cost of RES resource.

6 CONCLUSION

In this paper, we have investigated the computation off-
loading problem in a VEC network through jointly consid-
ering the allocation of communication and computation
resources, aiming at providing a detailed analysis of the
delay and cost of computation offloading for VEC and
minimizing the delay and cost from the perspective of
multi-objective optimization. To this end, we first estab-
lished an offloading framework with communication and
computation for VEC, where tasks with different require-
ments for computation capability are considered. To con-
sider comprehensive performance, we then formulated a
multi-objective optimization problem to minimize both the
delay and cost during computation offloading. To solve
the formulated optimization problem, which is also a
MINLP problem, we introduced the concept of Pareto opti-
mality and proposed a particle swarm optimization based
computation offloading (PSOCO) algorithm to obtain the
Pareto-optimal solutions. Finally, based on the real-world
vehicular trace, we implemented extensive simulation to
verify the performance of PSOCO. Moreover, we also pre-
sented a comprehensive analysis and discussion on the
relationship between delay and cost among the Pareto-
optimal solutions.

In the future, we will consider continuous tasks, the
mobility of vehicles, and the handover between different
RSUs for a more practical VEC scenario. And we will con-
sider developing real prototypes to conduct field tests of the
proposed algorithm.
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