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Abstract—With the proliferation of the Internet of Things (IoT)
and the concomitant computation-intensive tasks, the surging
demand for computation offloading can be expected. How to
optimally make offloading decisions towards best quality of
experience (QoE) represents a fundamental research problem. In
this paper, considering the different QoE requirements and the
inherent characteristic of tasks, we investigate the computation
offloading problem in edge computing enabled IoT networks.
Particularly, we first establish task local computing model and
task offloading model by fully considering the parallel and
serial processing characteristics of tasks. Based on a thorough
theoretical performance analysis, a QoE-driven adaptive com-
putation offloading (QEACO) strategy is proposed. And users
can optimally and adaptively make offloading decisions towards
best QoE. Finally, simulation results indicates that QEACO can
significantly improve the QoE of users compared to several
benchmark schemes.

Index Terms—Internet of things, computation offloading, qual-
ity of experience, parallel and serial processing, performance
analysis

I. INTRODUCTION

The explosive growth of Internet of Things (IoT) and
intelligent devices, e.g., mobile phones and wearable devices,
brings the ever-increasing requirements for communication
and computing [1]. And a large number of IoT applications
have high demand for computing, such as video-assisted real-
time navigation in automotive driving, intelligent personal
assistants in smart home and artificial intelligence (AI)-based
applications in industry [2]. However, how to execute these
computation-intensive applications on IoT terminals with lim-
ited computational capability faces huge challenges. Initially,
traditional cloud computing has been widely regarded as a fea-
sible paradigm. However, the unstable transmission and long
latency make it difficult to satisfy the quality of experience
(QoE) of users. Therefore, edge computing as a promising
solution pushes the computational resources to the edge of
the network, e.g., roadside units (RSUs), access points (APs)
and base stations (BSs). In this way, computation-intensive
applications can be offloaded to the proximity of IoT users to
reduce latency [3].

Recent years, many works have focused on computation
offloading in edge computing networks for different QoE
requirements. For reducing latency, the computation offloading
problem combined with content caching of Internet of vehicles
in [4] was formulated to minimize the total network latency
under long-term energy constraints for RSUs. The authors

in [5] jointly considered a multi-hop partial computation
offloading and network flow scheduling framework, where
the average completion time of all tasks is minimized. And
the literature [6] considered to minimize the task execution
latency in a device-to-device (D2D)-enabled 5G computation
offloading scenario. The literature [7] considered to jointly
minimize the delay and cost for vehicular edge computing.
For reducing energy consumption of energy-constrained IoT
devices, the authors in both [8] and [9] jointly considered the
computation offloading and resource allocation problems, with
the aim to minimize the weighted sum of terminal energy
consumption. Also, utilizing the concept of digital twin, the
authors in [10] proposed to minimize the long-term energy
efficiency for industrial IoT devices. For some composite
performance indexes, the authors in [11] considered that each
device tries to minimize its own cost, which is a combination
of task completion time and energy consumption. In [12],
the computation offloading in vehicular edge computing is
formulated as an utility maximization problem, where utility
is defined as the offloading task number to the edge server.

Marvelous solutions have been proposed to address the
computation offloading problem. Although lots of research and
projects have been working on how to offload tasks, how to
evaluate the offloading process is still an open question. For
example, how long latency the offloading brings, how much
acceleration the offloading can be obtained, how much band-
width the offloading requires, and how much overhead/cost the
offloading consumes? In particular, different type of users in
IoT networks pursue different QoE performance. For example,
the connected and autonomous vehicles prefer a low task
processing time during offloading for safety purpose, while the
unmanned aerial vehicles (UAVs) prefer an energy-efficiency
computation offloading for a long battery life. In this regard,
it is imperative to design an adaptive computation offloading
strategy based on IoT users’ QoE requirements. Moreover, in
existing works, the application tasks are directly processed lo-
cally or offloaded, ignoring the tasks themselves characterized
by serialized and parallelizable computing parts.

Motivated by the discussion above, we aim to propose a
QoE-driven adaptive computation offloading (QEACO) strat-
egy for edge computing enabled IoT networks, where the
characteristic of tasks is fully considered and each IoT user can
optimally and adaptively make its offloading decision based
on its QoE requirement. Specifically, we first establish the
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detailed computation offloading model, where the serialized
and parallelizable computing characteristic of tasks is fully
considered. Then, we present a thorough performance analysis
on IoT users’ different QoE requirements for task processing
latency, task processing energy consumption, computing accel-
eration, and computing cost. Thereafter, the QEACO strategy
is proposed based on the QoE requirements. The contributions
of this paper are summarized as follows.

• Model: Considering the serialized and parallelizable pro-
cessing part of a task, as well as the computing accel-
eration, we establish the detailed task local computing
model and task offloading model.

• Analysis: Based on a theoretical performance analysis,
we propose a QEACO strategy, where each IoT user
can optimally and adaptively make its offloading decision
towards its best QoE.

• Validation: Based on real-world vehicular traces, exten-
sive simulations demonstrates the effectiveness of our
proposed QEACO over several benchmark schemes.

The rest of the paper is organized as follows. We introduce
the system model in Section II. The thorough performance
analysis and the proposed QEACO strategy are presented in
Section III. In Section IV, performance evaluation is presented.
Finally, we conclude the paper in Section V.

II. SYSTEM MODEL

Fig. 1 illustrates a typical computation offloading scenario in
IoT networks, where various tasks would be generated from
IoT users. We use three items to describe an arbitrary task
T , i.e., T = {D,α, c}, where D stands for the data size, α
(0 ≤ α ≤ 1) stands for the parallelizable fraction1, and c
represents the processing density (in CPU cycles/bit) [3]. The
IoT users, such as CAVs and drones, can be connected to the
edge through various communication channels (such as 5G and
dedicated short range communication (DSRC)). We denote the
bandwidth of orthogonal communication channels by B and
the number of channels is denoted by M . T can be processed
locally, or offloaded to edge, which will be discussed in the
following.

A. Task Local Computing Model

We denote the number of users’ cores by n1, and the
processing capability (i.e., the amount of CPU frequency in
cycles/s) of each core assigned for local computing as f l, then
the power consumption of each core for local computing is
expressed as pl = κ(f l)3, where κ is a coefficient reflecting
the relationship between processing capability and power
consumption.

According to the Amdahl’s law [13], the local computing
time of T , which consists of the serialized computing time tls
and the parallelizable computing time tlp, can be expressed as

t1 = tls + tlp =
c(1− α)D

f l
+

αcD

n1f l
. (1)

1Parallelizable fraction refers to the ratio of the amount of data that can be
processed in parallel to the total data volume.
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Fig. 1. Computation offloading in IoT networks.

For simplicity, we neglect the time to split and combine the
task in this paper. And the energy consumption for local
computing is formulated as

El = pltls + n1p
ltlp = κcD(f l)2. (2)

For local computing, the cost only comes from the energy
consumption, which is formulated as

Cl = ϱEl = ϱκcD(f l)2, (3)

where ϱ is a weight coefficient indicating the energy consump-
tion cost of one unit energy.

B. Task Offloading Model
We denote the path loss by d−ϑ, where d denotes the

distance from the user to the edge server, and ϑ denotes
the path loss exponent [14]. Based on Shannon’s formula,
when data is offloaded from the user to the edge server
through a communication channel, the transmission rate can
be expressed as r = Blog2(1 + Ptr|h|2

ω0dϑ ), where Ptr is the
transmission power, h is the channel fading coefficient, and
ω0 denotes the white Gaussian noise power. Assume that N
denotes the average number of users with computation tasks
within the coverage area of an edge server, the average number
of communication channels assigned for each user is M̃ = M

N .
Accordingly, the transmission delay for offloading D-bits of
data to the edge server can be expressed as

tup =
D

rM̃
=

DN

rM
. (4)

And the energy consumption for transmission is expressed as

Etr = Ptrt
up =

PtrDN

rM
. (5)

Let n2 ×N denote the number of cores of the edge server,
fe denote the processing capability of each core (fe > f l),
then the average number of cores assigned for one user is n2

(n2 > n1 ≥ 1). The power consumption of each core of the
edge server to process data is pe = κ(fe)3. And the computing
time of T , which consists of the serialized computing time tes
and the parallelizable computing time tep, can be expressed as

te = tes + tep =
c(1− α)D

fe
+

αcD

n2fe
. (6)
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And the energy consumption of the edge server for processing
the D-bits of task T is formulated as

Ee = petes + n2p
etep = κcD(fe)2. (7)

For task offloading, the total latency is a combination of
uplink transmission delay and computing time of the edge
server2, which is formulated as

t2 = tup + te =
DN

rM
+

cD

fe
(1− α+

α

n2
). (8)

And the total cost is a combination of transmitting energy cost,
communication resource cost, and edge server computation
and energy costs. Accordingly, the total cost is formulated as

Coff = ϱEtr + p1t
upM̃ + p2t

e + ϱEe

=
ϱPtrDN

rM
+

p1D

r
+

p2cD

fe
(1− α+

α

n2
)

+ ϱκcD(fe)2,

(9)

where p1 denotes the cost for using a communication channel
per unit time, p2 denotes the cost for the edge server process-
ing data per unit time.

C. Computing Acceleration

According to Amdahl’s law [13], the obtained speedup when
Di-bits of data is computed locally is formulated as S1 =

1
(1−α)+ α

n1

. Similarly, the obtained speedup when Di-bits of
data is computed by the edge server is formulated as S2 =

1
(1−α)+ α

n2

. However, when data is offloaded to the edge, the
actual latency not only comes from the computing latency, but
also the transmission delay. In this circumstance, the actual
computing acceleration is expressed as

A =
t1
t2

=

c
fl (1− α+ α

n1
)

N
rM

+ c
fe (1− α+ α

n2
)

(10)

III. PERFORMANCE ANALYSIS AND QEACO STRATEGY

A. Latency and Acceleration

For those latency-sensitive tasks, such as the perception of
CAVs, latency is the first consideration. According to formulas
(1) and (8), many parameters impacts the latency performance.
We first reveal how data size D influences the latency and
acceleration. According to formulas (1) and (8), the latency
for both t1 and t2 are linear functions of D, with slope kd1 =
c(1−α+ α

n1
)

f l and kd2 = N
rM +

c(1−α+ α
n2

)

fe , intercept bd1 = 0 and
bd2 = 0, respectively, and are shown as Fig. 2. According to
formula (10), the acceleration is a constant function of data
size, which is smaller than 1 if the latency of offloading is
larger than that of local computing, and larger than 1 if the
latency of offloading is smaller than that of local computing,
as shown in the red lines of Fig. 2.

Then we reveal how parallelizable fraction α influences the
latency and acceleration. According to formulas (1) and (8),
the latency for both t1 and t2 is a linear function of α, with

slope kp1 =
cD( 1

n1
−1)

f l ≤ 0 and kp2 =
cD( 1

n2
−1)

fe < 0, intercept

2We neglect the output return process since the processing result is usually
very tiny [11].

bp1 = cD
f l and bp2 = cD

fe + DN
rM , respectively. When α = 1, the

latency is denoted as t1(α = 1) = cD
n1f l and t2(α = 1) =

cD
n2fe +

DN
rM , respectively. Based on different values of kp1 , kp2 ,

bp1, bp2, t1(α = 1), and t2(α = 1), there are six different latency
variation trends, along with the acceleration variation trends,
as shown in Fig. 3.
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Fig. 2. Latency and acceleration with varying data size
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(e) kp1 < kp2 , t1(α = 1) >
t2(α = 1)
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(f) kp1 > kp2 , t1(α = 1) >
t2(α = 1)

Fig. 3. Latency and acceleration with varying parallelizable fraction. For (a),
(b), and (c), bp1 < bp2 ; for (d), (e), and (f), bp1 > bp2 .

Fig. 4 illustrates how bandwidth influences the latency and
acceleration. According to formulas (1) and (8), the latency
of local computing and offloading is a constant function and
an inverse proportional function of bandwidth, respectively.
Especially, t2 can be reformulated as the form of t2 = a

B + b,

where a = DN

M log2(1+
Ptr|h|2

ω0dϑ
)

and b =
cD(1−α+ α

n2
)

fe . Since n1 <

n2 and f l < fe, hence
cD(1−α+ α

n1
)

f l >
cD(1−α+ α

n2
)

fe , which
means the limit of t2 is smaller than t1.
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Fig. 4. Latency and acceleration with varying bandwidth.

Moreover, we can also draw a conclusion from formula (10)
that the acceleration is an increasing function of fe and n2,
which also guides the edge service providers to deploy more
powerful edge servers with more cores for providing a higher
acceleration for IoT users.

B. Cost

The costs for local computing and offloading are denoted
as formulas (3) and (9), respectively. Since ϱκcD(f l)2 <
ϱκcD(fe)2, it is obviously that Cl < Coff . We reveal how
cost varies in terms of data size, parallelizable fraction, and
bandwidth in Fig. 5. It can be seen from Fig. 5(a) that both the
costs of local computing and offloading increase with increas-
ing data size. The cost of offloading decreases with increasing
parallelizable fraction while the cost of local computing keeps
a constant value, as shown in Fig. 5(b). Moreover, when
bandwidth increases, the cost of offloading decreases and tends
to be a constant value p1D

r + p2cD
fe (1−α+ α

n2
)+ϱκcD(fe)2,

while the cost of local computing is a constant function of
bandwidth, as shown in Fig. 5(c).

(a) cost vs. D (b) cost vs. α (c) cost vs. B

Fig. 5. Cost with varying data size, parallelizable fraction, and bandwidth.

C. QEACO Strategy

Based on the performance analysis presented above, a user
can make an optimal offloading decision to obtain it’s best
QoE according to the following QEACO strategy. First, a user
determine its priority for QoE (such as latency, acceleration,
energy, or cost). Second, based on the formulas presented
in Section II, the performance of both task local computing
and offloading are obtained, respectively. Third, compare the
performance of the two ways, and choose the one with a better
QoE performance. For example, if a user has a priority for
latency, the local computing time t1 and the total offloading
latency t2 are first obtained according to formulas (1) and (8).

If t2 is less than t1, offloading is preferred; otherwise, local
computing is preferred.

IV. SIMULATION RESULTS

We consider an autonomous driving scenario where a vehi-
cle has a latency-sensitive object identification task. The length
and width of each lane are 1000 m and 4 m, respectively.
And one RSU is deployed in the middle of roadside. The
trajectory of the vehicle is randomly chosen from GAIA Open
Dataset of DiDi Express [15]. The number of cores of the
vehicle and the edge server at the RSU side are 12 and
128 respectively, the processing capacities of the vehicle and
the edge server is 1.4 × 108 cycles/s and 3 × 109 cycles/s,
respectively. For the uplink wireless communication, we set
the average transmission rate varying from 10 Mbps to 50
Mbps. The main simulation parameters are summarized in
Table I. And we compare the system performance of our
proposed QEACO against the following benchmark schemes:

• Local-Comp-Only (LCO): the vehicle computes its task
locally;

• Offload-Comp-Only (OCO): the vehicle offloads its task
to edge server to process;

• Single-Core-Comp (SCC): the task is processed by just
one core processor of vehicle or edge server.

TABLE I
SIMULATION PARAMETERS

Parameters Values

Data size of the task D 1 Mbit
Parallelizable fraction α 0.1 ∼ 0.6
Processing density c 10 cycles/bit
Processing capacity of vehicle f l 1.4× 108 cycles/s
Processing capacity of edge server fe 3× 109 cycles/s
Number of cores of vehicle n1 12
Number of cores of edge server n2 ×N 128
Average uplink transmission rate r {20, 100} Mbps

Fig. 6 illustrates the latency and acceleration performance
under different parallelizable fraction. It is obvious the varia-
tion trends of LCO and OCO is the same as that in Fig. 3(d).
And the latency of OCO is smaller than that of LCO until the
parallelizable fraction is bigger than about 0.33, as the part
circled in the red in Fig. 6. Our proposed QEACO has the best
performance among the four schemes. Because the vehicle in
QEACO can adaptively choose the optimal offloading choice
to obtain a lower latency towards its best QoE performance. It
is noteworthy that the performance of SCC keeps unchanged
with varying parallelizable fraction. This is because when
parallelizable fraction is small, task being processed locally in
SCC would result in a large latency than being processed at
the edge server since the poorer processing capacity of vehicle.
Thus, offloading is always the optimal choice for different
parallelizable fration. Moreover, the computing time would
keep unchanged since n2 = 1 for SCC thus the total latency
keeps unchanged according to formulas (6) and (8).

To reveal how bandwidth influence the performance, we
let the average transmission rate vary from 10 Mbps to 50
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Fig. 6. Latency and acceleration under different parallelizable fraction.

Mbps in Fig. 7. It is obvious that the results of LCO and
OCO in Fig. 7 is the same as the variation trends discussed in
Fig. 4. The latency of OCO is decreased with the increasing
average transmission rate while that of LCO keeps unchanged.
This is because no transmission process is needed for LCO.
Our proposed QEACO outperforms other schemes due to its
adaptive offloading choice. The variation trend of SCC is
nearly the same as OCO, which means the vehicle in SCC
always choose offloading action to obtain a lower latency
since the powerful processing capability of edge server. It is
noteworthy that the latency of OCO is bigger than that of
LCO until the average transmission rate is bigger than about
26 Mbps, as the part circled in the red. This indicates that
wireless communication is the main factor determining the
performance of OCO, and increasing the transmission rate can
greatly improve the performance of OCO and QEACO.

Fig. 7. Latency and acceleration under different average transmission rate.

V. CONCLUSION

In this paper, we investigated the computation offloading
problem in edge computing enabled IoT networks. Consider-
ing the parallel and serial processing characteristics of tasks,
we first establish both task local computing model and task
offloading model. Based on the different preferences of users
for QoE, we then present a thorough performance analysis

and discuss how QoE performance vary in terms of data
size, parallelizable fraction, and bandwidth. And a QEACO
strategy is therefore proposed, where a user can optimally and
adaptively make its offloading decision towards its best QoE.
Finally, simulation results show that QEACO can outperform
the benchmark schemes.
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