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Resource Scheduling in Edge Computing: A Survey

Quyuan Luo ', Shihong Hu

Abstract—With the proliferation of the Internet of Things
(IoT) and the wide penetration of wireless networks, the surg-
ing demand for data communications and computing calls for
the emerging edge computing paradigm. By moving the services
and functions located in the cloud to the proximity of users,
edge computing can provide powerful communication, storage,
networking, and communication capacity. The resource schedul-
ing in edge computing, which is the key to the success of edge
computing systems, has attracted increasing research interests.
In this paper, we survey the state-of-the-art research findings
to know the research progress in this field. Specifically, we
present the architecture of edge computing, under which differ-
ent collaborative manners for resource scheduling are discussed.
Particularly, we introduce a unified model before summarizing
the current works on resource scheduling from three research
issues, including computation offloading, resource allocation, and
resource provisioning. Based on two modes of operation, i.e., cen-
tralized and distributed modes, different techniques for resource
scheduling are discussed and compared. Also, we summarize the
main performance indicators based on the surveyed literature.
To shed light on the significance of resource scheduling in real-
world scenarios, we discuss several typical application scenarios
involved in the research of resource scheduling in edge comput-
ing. Finally, we highlight some open research challenges yet to be
addressed and outline several open issues as the future research
direction.
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I. INTRODUCTION
A. From Cloud Computing to Edge Computing

ITH the rapid development of the mobile Internet,
Wsmart devices have become an indispensable part of
people’s life. Increasingly complex applications such as mobile
payment, smart healthcare, mobile games, and virtual reality
(VR) put higher requirements on the resource capacity of smart
devices. Since Google put forward the concept of cloud com-
puting in 2008 [1], cloud computing was gradually accepted
and introduced into the mobile environment, which breaks
through the resource limitations of smart devices and provides
highly demanding applications for users. Cloud computing
is a cost-effective model that provides abundant applications
and services while making information technology (IT) man-
agement more accessible and responding to users’ demands
faster [2]. The services (computing, communication, storage,
and all necessary services) are delivered and implemented in
a simplified way: on-demand, regardless of the users’ location
and the type of smart devices.

Thanks to rapid advances in underlying technologies, the
Internet of Things (IoT) is opening tremendous opportuni-
ties for a large number of novel applications that promise to
improve the quality of our lives [3]. Technically, all appli-
cations we discussed in this survey belong to the category of
IoT. Applications such as unmanned aerial vehicle (UAV), con-
nected and autonomous vehicle (CAV), video service, smart
city, smart health, smart manufactory, and smart home are all
committed to improving the quality of our lives through var-
ious technologies of IoT. However, in recent years, the IoT
era has brought higher requirements for transmission band-
width, latency, energy consumption, application performance,
and reliability. In this context, due to the limited bandwidth,
high latency, and high energy consumption in the central-
ized processing model of cloud computing, it is hard to meet
the high-performance requirements of users. Fortunately, it
can be estimated that tens of billions of edge nodes (ENs)
will be deployed in the near future [4]. By integrating these
large amounts of idle resources distributed at the edge of
the network to seamlessly provide services for users, a new
computing paradigm - edge computing is proposed, which is
regarded as the key technology and architectural concept of
the transition to 5G [5]. Fig. 1 illustrates the edge computing
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Fig. 1. Edge computing paradigm [6]. The things not only are data consumers
but also play as data producers. At the edge, the things can not only request
service and content from the cloud but also perform the computing tasks from
the cloud. Edge can perform computing offloading, data storage, caching and
processing, as well as distribute request and delivery service from cloud to
user.

paradigm. Edge computing refers to the enabling technolo-
gies allowing computation to be performed at the edge of
the network, on downstream data on behalf of cloud services
and upstream data on behalf of IoT services. Edge comput-
ing moves the services and functions originally located in the
cloud to the proximity of users, which integrates the cloud
computing platform and the network to provide powerful com-
puting, storage, networking, and communication capacity at
the edge of the network. Edge computing is interchangeable
with fog computing, but edge computing focuses more on the
things side, while fog computing focuses more on the infras-
tructure side [6]. Since the services and functions are closer to
users in edge computing, a better quality-of-experience (QoE)
and quality-of-service (QoS) can be obtained by users. Let’s
take the edge computing in mobile communication/5G com-
munication as an example. With the development of mobile
communication, especially the 5G communication, the demand
for high-quality wireless services shows a trend of exponential
growth. In the age of 5G, in addition to mobile phones, tablets,
a lot of new business scenarios in mobile network service
emerges, such as autonomous driving, VR, and augmented
reality (AR), and more close to the life business scenarios,
such as smart grid, smart agriculture, smart city, and envi-
ronmental monitoring. The emergence of these new service
scenarios has higher requirements for 5G key technical indi-
cators such as time delay, energy efficiency and reliability. In
this context, due to the limited bandwidth, high latency, and
high energy consumption in the centralized processing model
of cloud computing, it is hard to meet the high-performance
requirements of users. To cope with the issue in mobile com-
munication, a new emerging concept, known as mobile edge
computing (MEC), has been introduced. The MEC brings
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computation and storage resources to the edge of the mobile
network enabling it to run the highly demanding applica-
tions at the user equipment while meeting strict performance
requirements [7].

B. Resource Scheduling in Edge Computing

In recent years, resource scheduling in edge computing
has attracted widespread interest from industry and academia.
Before introducing resource scheduling in edge computing,
two questions should be answered firstly:

1) What is Resource Scheduling in Edge Computing?
Generally, resource scheduling refers to the set of actions
and methodology that participants used to efficiently assign
resources to the tasks that need to complete, and achieve
the objectives of participants based on resource availability.
Specifically, according to edge computing characteristics, the
key terms of resource scheduling in edge computing can be
detailed as follows.

e Resources: Various resources existing in the edge
network, by which the powerful serviceability is
provided and the tasks can be completed. The
resource in edge network can be categorized into
three types, i.e., communication resources, storage
resources (also as caching resources), and computing
resources [8], [9].

o Tasks: Tasks generally refer to data generated from
users. The task types may vary based on different
application scenarios for different objectives. For exam-
ple, the data from LiDAR and high-definition camera
on CAVs is for safety purpose [10], [11]; the data
from body area networks (BAN) is for health moni-
toring; and the data from surveillance cameras is for
security [12].

o Farticipants: To complete tasks, there are different col-
laborative processing modes that involves different partic-
ipants. For “things-edge collaboration”, users (referred as
“things”) and edge are the participants [13]. For “things-
edge-cloud collaboration”, users, edge, and cloud are the
participants [14]. For “edge-cloud collaboration”, edge
and cloud center are the participants [15].

o Objectives: Different users pursue different objectives
during task processing. For example, CAVs aim to obtain
low latency for traffic safety [16]. UAVs and smart health
devices aim to reduce energy consumption for long bat-
tery life [17]. The objectives can also be referred to as
performance indicators.

e Actions: The ways to achieve the objectives of partic-
ipants are referred to as actions. In edge computing,
there are mainly three actions: 1) computation offload-
ing, which decides whether a task is offloaded to the
edge or the cloud to process [18]; 2) resource alloca-
tion, which means allocating the communication, stor-
age resources, and computing resources for tasks [19];
3) resource provisioning, which decides the user-resource
pair association from the perspective of users, or actively
conducts resource placement from the perspective of
service providers (SPs) [20], [21].
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o Methodology: Methodology refers to the methods, tech-
niques, and algorithms to better take the above actions for
the objectives of participants. Basically, the methodology
can be mainly categorized into centralized and distributed
manners. The centralized methodology needs a control
center to collect global information while the distributed
methodology does not [22], [23].

2) Why do We Need Resource Scheduling in Edge
Computing? While edge computing greatly strengthens
the serviceability of edge network by providing powerful
computing, storage, and communication capacities, it also
requires appropriate resource scheduling strategies from three
perspectives.

e User: Tens of billions of heterogeneous end-devices
are geographically deployed in a distributed manner,
the data volume generated from those end-devices and
their corresponding applications are also heterogeneous.
Orchestrating the limited edge resources to better process
those data requires appropriate resource scheduling strate-
gies. In the edge computing network, there are not only
static end-devices (e.g., sensors in smart homes, video
cameras in public places), but also dynamic ones such
as UAVs and vehicles, making the resource management
even more challenging. Appropriate resource schedul-
ing can alleviate this situation. Besides, the data from
different application scenarios may have different ser-
vice requirements. For example, the CAVs in intelligent
transportation systems (ITS) need to process data within
several milliseconds for traffic safety; thus low latency
is their main objective. The UAV-assisted edge comput-
ing usually focuses more on long battery life; thus the
objective of low energy consumption is expected dur-
ing data processing. Also, some mobile devices (MDs)
and IoT devices aim to achieve low data processing cost.
Therefore, it needs proper resource scheduling strategies
to meeting those service requirements.

o Service provider: In addition to users, the edge comput-
ing ecosystem incorporates multiple actors, such as edge
infrastructure SPs, edge computing service providers,
application service providers, and mobile network opera-
tors. Although these SPs and operators are resource-rich
and have powerful serviceability, they are all commer-
cial entities aiming at earning revenue by providing
services [35]. In this context, designing an appropriate
resource scheduling strategy can help them get a max-
imal revenue during service providing competition at a
minimal cost.

o Edge network: Edge resources are distributed and scat-
tered in the edge network. It is a waste of resources if
scattered ones can not be efficiently utilized by resource
scheduling. For example, the parked vehicles (PVs)
account for a large portion of the global vehicles and have
idle time to perform computational workloads [36], [37].
If an efficient resource strategy is applied, they can be
combined to establish an available and cost-effective
computing resource pool [38], which helps to alleviate
workloads of edge computing servers and promote the
distributed computing environment. Besides, since both

2133

users and SPs try to earn their benefits from edge com-
puting, it is more like a game between buyers and sellers
in terms of resources and services. An effective resource
strategy can jointly consider their interests and improve
the edge system utility [39].

C. Related Surveys

In recent years, many surveys on edge computing from var-
ious perspectives have been published, as shown in Table I.
Mao et al. [24] presented a survey with the focus of joint
radio-and-computational resource management in edge com-
puting. Likely, a more recent survey [30] also focused on
resource management in edge computing. The difference
is that this survey is from the viewpoint of architecture,
infrastructure, and the underlying algorithms about resource
management. Furthermore, both [28] and [31] presented a
comprehensive survey of resource management in edge com-
puting, the work in [28] surveyed related literature in terms
of resource type, objective, resource location, and resource
while Ghobaei-Arani et al. [31] provided a systematic review
from application placement, resource scheduling, task offload-
ing, load balancing, resource allocation and provisioning six
fields in resource management. Wang et al. [25] summarized
the related works on computing, caching, and communica-
tion techniques in the area of edge computing. Mach and
Becvar [7] surveyed the research on computation offload-
ing in the area of edge computing. Later, Lin et al. [10]
presented a more comprehensive survey on computation
offloading. The review angle of the survey [26] is more
macro. It comprehensively elaborated on the definition, archi-
tecture, application areas, and advantages of edge computing.
Besides, Varghese et al. [34] presented a systematic survey on
edge benchmarking, which summarized the research from the
system under test, techniques, quality metrics, and benchmark
runtime in the edge computing. Some surveys focus on one
topic, like service adoption and provision [27], resource pro-
vision from a machine learning perspective [29] or computing
paradigms [33] in edge computing.

It can be concluded that some existing surveys summarized
the research in edge computing only from a single angle in
the resource scheduling field, like computation offloading or
resource provisioning. Some surveys in previous years mostly
discussed topics in edge computing from a high level and
failed to comprehensively address these topics at the depth.
With the increasing enthusiasm of the academic community
for edge computing research in recent years, a large number of
new research results have emerged, among which the research
on resource scheduling is particularly prominent. Although
the existing surveys listed in Table I have reviewed edge
computing from various perspectives, none of them focus
on the resource scheduling issue in a comprehensive way.
This motivates us to present a systematic survey on resource
scheduling, so we review from multiple perspectives, including
architecture, research issue, techniques, indicators, and appli-
cations to provide a comprehensive, informative and up-to-date
viewpoint for researchers.
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TABLE I
A SUMMARY OF SURVEYS ON EDGE COMPUTING

Paper Year Topic

Mao et al. [24] 2017  Joint radio-and-computational resource management in edge computing.

Wang et al. [25] 2017  Issues on computing, caching and communication techniques in edge computing.
Mach et al. [7] 2017  User-oriented use case of computation offloading in edge computing.

Abbas et al. [26] 2017  Relevant research and technological developments in edge computing.

Peng et al. [27] 2018  Service adoption and provision in edge computing.

Tocze et al. [28] 2018  Resource management and optimization of multiple resources in edge computing.

Lin et al. [10] 2019  Research on computation offloading in edge computing.

Duc et al. [29] 2019  Resource provisioning in Edge-Cloud computing from a machine learning perspective.
Hong et al. [30] 2019  Resource management from the architecture, infrastructure and algorithms in edge computing.
Ghobaei et al. [31] 2019  Resource management approaches in edge computing.

Santos et al. [32] 2019  Resource provisioning from theory to practice in edge computing

Ren et al. [33] 2019  Issues on different computing paradigms in edge computing.

Varghese et al. [34] 2020  Different dimensions of research works in edge benchmarking.
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Fig. 2. The distribution of papers surveyed by year and source. Book includes
books and book chapters; Report includes arXiv articles, website articles and
white papers; Conference includes conference and symposium papers; Journal
includes journal and magazine articles.

D. Contribution and Organization

This article provides a comprehensive survey of the state-
of-the-art research with a focus on resource scheduling in edge
computing. Fig. 2 shows the distribution of papers surveyed
by year and source. Specifically, the focus of this article is
five-fold.

o Architecture (Section II): A three-tier edge computing
architecture including the thing layer, the edge layer, and
the cloud layer is first introduced. Then we elaborate
on four different collaborations for resource schedul-
ing under the three-tier architecture, i.e., things-edge,
things-edge-cloud, edge-edge, and edge-cloud.

e Basic Model and Research issue (Section I1I): To achieve
the different requirements of both end-devices and the
system for QoS and QoE, several basic models are first
introduced. Based on those models, we then present three
aspects involved in resource scheduling, which forms the
three key research issues, i.e., computation offloading,
resource allocation, and resource provisioning.

o Technique and indicator (Section IV): We summarize
the main performance indicators such as latency, energy
consumption, cost, utility, profit, and resource utilization
in existing works. To achieve those objectives, we also
elaborate on the resource scheduling techniques both in
centralized and distributed ways.

o Application (Section V): We summarize several typi-
cal application scenarios involved in the research on
resource scheduling in edge computing, mainly includ-
ing UAV, CAV, video service, smart city, smart health,
smart manufacturing, and smart home.

o Challenge and open issue (Section VI): The lessons
learned in the area of resource scheduling in edge com-
puting are highlighted and several challenges yet to be
addressed are presented for future research directions.

To help the readers have a comprehensive picture of the

structure of this survey, Fig. 3 outlines the organization of the
survey, and Table II lists the acronyms that will be frequently
used in the survey.

II. ARCHITECTURE

This section introduces the edge computing architecture
for resource scheduling. We overview the composition of
the architecture and introduce a three-tier heterogeneous edge
computing network, where the first tier is the thing layer, the
second tier is the edge layer, and the third one is the cloud
layer. Based on the three-tier architecture, we then present dif-
ferent collaborative manners for resource scheduling in edge
computing.

A. Overview of the Architecture for Resource Scheduling
in Edge Computing

Traditional cloud computing has difficulty to meet the
high requirements of users in real-time response and low
energy consumption due to bandwidth congestion and heavy
load on the core network (CN). Nevertheless, the edge
computing paradigm itself cannot be a substitute for cloud
computing because it does not have as powerful resource
capacity as cloud computing. In some cases, however, the
advantages of edge computing can be leveraged to offload
computing services from the cloud to the edge to improve
users’ QoE. Accordingly, cloud computing and edge com-
puting are complementary and mutually reinforcing. Thus,
the resource scheduling in edge computing is not only oper-
ated among users and the edge, but also among users, the
edge, and the cloud. The three-tier heterogeneous architecture
for resource scheduling in edge computing is presented, as
shown in Fig. 4, including the thing layer (a.k.a, the user
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TABLE II
SUMMARY OF ACRONYMS FREQUENTLY USED IN THE PAPER

Acronym  Definition Acronym  Definition

ADMM Alternating Direction Method of Multipliers | MD Mobile Device

Al Artificial Intelligence MDC Micro Data Center

AR Augmented Reality MDP Markov Decision Process

BAN Body Area Network MEC Mobile Edge Computing

BS Base Station MILP Mixed Integer Linear Programming
CAV Connected and Autonomous Vehicle MU Mobile User

CC Computing and Communication NFV Network Function Virtualization
CCS Computing, Communication, and Storage NSGA Non-dominated Sorting Genetic Algorithm
CN Core Network NOMA Non-orthogonal Multiple Access
DQN Deep Q-network PVEC Parked Vehicle Edge Computing
DRL Deep Reinforcement Learning PSO Particle Swarm Optimization
DSRC Dedicated Short-Range Communications PV Parked Vehicle

EC Edge Cloud QoE Quality of Experience

EG Edge Gateway QoS Quality of Service

EN Edge Node RSU Road Side Unit

ES Edge Server SP Service Provider

Fiwi Fiber-Wireless SCA Successive Convex Approximation
FL Federated Learning SDN Soft-defined Network

GA Genetic Algorithm TDMA Time Division Multiple Access
IoT Industrial Internet of Things UAV Unmanned Aerial Vehicle

IoT Internet of Thing UE User Equipment

IT Information Technology VEC Vehicle Edge Computing

ITS Intelligent Transportation Systems VM Virtual Machine

LSTM Long Short-Term Memory WAN Wireless Access Network

Section I. Introduction

A. From Cloud Computing to Edge Computing
B. Resource Allocation in Edge Computing
1) What is resource scheduling in edge computing?
2) Why do we need resource scheduling in edge computing?
C. Related Surveys
D. Contribution of the Survey

r-r—-—-r—H——"-""""-"-"-"="-""=-—"--—--=-=-=--"-"-"=-"=-"-—--"=-"=-"-"--"-"-""=-"-"==—-—"=—"=—-—"=——"=—= A
| : q Section IV. Key Techniques and Performance '
: Section II. Architecture Indicators :
| | A. Three-Tier Architecture A. Centralized Methods: B. Distributed Methods: | |
I'| B. Four Collaboration Manners 1) Convex Optimization; 1) Game Theory; :
: 1) Things-Edge 2) Approximation; 2) Matching Theory; |
| 2) Things-Edge-Cloud 3) Heuristic method; 3) Auction; I
I 3) Edge-Edge 4) Machine Learning. 4) Federated Learning; | |
: 4) Edge-Cloud C. Key Performance Indicator 5) Block Chain. :
' Section III. Basic Model and Section V. Resource Scheduling in Applications '
: Research Issues Context :
| | A. Basic Model A. UAV E. Smart Health |
|| B. Computation Offloading B. CAV F. Smart Manufactory I
I'| C. Resource Allocation C. Video Service G. Smart Home :
: D. Resource Provisioning D. Smart City |
L - - e _______ |
v
Section VI. Challenges and Research Directions
A. Model and Architecture B. Feasibility C. Security and Privacy D. Dynamics
E. Joint Scheduling of CCS Resources F. Evaluation

v

Section VII. Conclusion

Fig. 3. Road map of the survey.

layer), the edge layer, and the cloud layer. The three-tier of this kind of architecture is to illustrate the relationship
architecture is a widely popular and accepted paradigm by among components that make up the edge computing system.
many existing works [7], [10], [24], [26], [30]. The function In the following, we first give a brief introduction on the
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Fig. 4. Architecture for Resource Scheduling in Edge Computing.

Collaboration Manners for Resource Scheduling
under Three-Tier Architecture

Things-Edge
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Things-Edge-Cloud
Collabobration

Edge-Edge
Collabobration

Edge-Cloud
Collabobration

Fig. 5. Four different collaboration manners for resource scheduling under
three-tier architecture.

three layers. Then, we elaborate on four different collabora-
tions for resource scheduling under the three-tier architecture,
i.e., things-edge collaboration, things-edge-cloud collabora-
tion, edge-edge collaboration, and edge-cloud collaboration,
as shown in Fig. 5.

1) Thing Layer: The thing layer, also known as the user
layer, is composed of various end-devices (a.k.a., things), such
as UAVs [40], CAVs [16], AR equipment [41], surveillance
cameras for smart city [42], sensors for smart health [43],
IoT devices for smart manufacturing [44], [45], smart devices
for smart home [46]. In different works, end-devices are
also called MDs or mobile users (MUs). Various things can
perceive and have certain storage and computing capability.

Thing
¢ ‘B‘I )

Things-Edge

Smart City Devices

Things continuously generate and collect multiple types of
data. Based on the QoE and QoS requirements of things, the
data can be processed locally, or be offloaded to the edge and
the cloud. In the edge computing network, there are not only
static end-devices (e.g., sensors in smart homes, video cameras
in public places) but also dynamic ones such as UAVs and
vehicles, making the resource management even more chal-
lenging. Therefore, different solutions are proposed to address
this issue, which are discussed in Section IV.

2) Edge Layer: The edge layer, as the core of the three-
tier architecture, is an intermediate layer between the thing
layer and the cloud layer. From the perspective of hardware
composition, the edge layer consists of various networking
and computing equipment, such as cellular tower, edge server
(ES), roadside unit (RSU), gateway, edge controller, etc. The
edge layer provides wireless access to smart devices through
the radio access technology, such as Long Term Evolution
(LTE), Wireless Fidelity (WiFi), and Dedicated Short-Range
Communications (DSRC). Basically, the edge layer can pro-
vide more powerful storage and computing capabilities than
the thing layer. From the perspective of software composition,
the edge layer has edge management capabilities that offer
service orchestration and invocation and schedule the ESs to
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complete tasks. The edge layer can receive, process, and for-
ward data streams from the thing layer, and achieve intelligent
sensing, privacy protection, data analysis, intelligent comput-
ing, process optimization, and real-time control. Besides, since
the edge and the cloud are complementary and mutually rein-
forcing, services in the cloud can be offloaded to the edge
layer for load balancing and better QoE. With the objective
of reducing bandwidth usage and energy consumption of the
CN as well as reducing the communication overhead between
the edge and the cloud, the edge layer is expected to schedule
edge resources to enable rapid service response.

3) Cloud Layer: The cloud layer consists of the existing
cloud computing infrastructures, such as computing units, stor-
age units, and micro data centers (MDCs), connected with
the edge layer through the CN (a.k.a, backbone network).
Among the three layers, the cloud layer is undoubtedly the
most powerful data processing and storage center. While
ESs in the edge layer can process large amounts of data to
reduce latency and energy consumption, the edge computing
paradigm still requires the computing power and high-capacity
storage infrastructure of the cloud to handle some tough tasks
and global information. For example, the cloud layer can
receive data streams from the edge layer, and send control
information to the edge layer, and then from the edge layer
to the thing layer, thereby optimizing the resource schedul-
ing and field production process from a global perspective.
Besides, based on the network resource distribution, the cloud
layer can also dynamically adjust the deployment strategies
and algorithms. Furthermore, it also provides decision-support
systems, intelligent production, networking collaboration, ser-
vice extension, personalized and customized service, and other
domain-specific application services.

B. Things-Edge Collaboration

The resource scheduling in a things-edge collaboration man-
ner involves the things layer and the edge layer. The task
generated from smart devices can be processed locally or
offloaded to ESs. Whether to offload these data depends on
the things-edge collaboration strategy and the QoS and QoE
requirements of smart devices. For example, Ali et al. in [47]
proposed to select an optimal set of computation components
to offload to ESs, aiming at minimizing the energy consump-
tion of MDs. In addition to offloading task to the ES in a
local region, Wang et al. in [48] proposed that the task can
also be offloaded to the ES in a nearby region to reduce over-
all system costs and guarantee users’ QoE. Since the service
requests of MUs and location may be dynamically changing,
the static ES deployment may cause a “service hole.” To com-
pensate for this issue and to improve the resource utilization
as well as the system utility, Liu et al. in [49] explored a vehi-
cle edge computing (VEC) network architecture and regarded
the moving vehicles as vehicular ESs to assist the fixed ES
to process the task from MUs. Besides, regarding UAVs as
ESs is also a research treading. Yang et al. in [50] consid-
ered a UAV-enabled mobile edge computing (MEC) network,
where the computation tasks from MUs can be processed by
UAVs aiming at minimizing the power consumption of all
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MUs and UAVs. Unlike previous studies in which users first
offload task to ES and results are then fed back, Chen et al.
in [51] investigated the relay-assisted computation offloading
(RACO). In the considered RACO scenario, a mobile-edge
relay server (MERS) is utilized to assist the results of com-
putational tasks among users by allocating computing and
communication resources.

C. Things-Edge-Cloud Collaboration

Although the things-edge collaboration manner has a rel-
atively powerful capacity, it ignores the huge computing
resources in the cloud computing center. With the ever-
increasing smart devices and their resource-hungry applica-
tions, it will become increasingly difficult to rely on the
resources in the edge layer alone to meet the service require-
ments of smart devices. Therefore, it is particularly important
and necessary to take full advantage of both edge comput-
ing and cloud computing and make them complementary to
design a collaborative paradigm, the things-edge-cloud collab-
oration manner. Guo and Liu in [52] introduced the concept
of a hybrid fiber-wireless (FiWi) network, in which the multi-
access edge computing and the centralized cloud computing
cooperated to provide better offloading performance and good
scalability as computation tasks increase. The combination
of edge computing and cloud computing FiWi takes the
complementary advantages of good scalability, high mobil-
ity, and supports diverse wireless access technologies in edge
computing, large capacity, high reliability, and low-latency
in fiber-enabled cloud computing. For the resource-intensive
applications, such as big-data analytics, Al processing, and
3D sensing from industrial Internet of things (IloT) devices,
Hong et al. in [53] proposed a multi-hop IloT-edge-cloud
collaborative computation offloading paradigm, aiming at min-
imizing energy consumption and computing time of task
processing. Wang et al. in [54] proposed the concept of
“HetMEC”, which refers to heterogeneous multi-layer MEC.
In HetMEC, if the task offloaded from smart devices cannot be
processed on time by the ES, it can be offloaded to the cloud
center, aiming at minimizing transmission and computing time.
Different from previous studies, Dinh et al. in [14] considered
renting computing resources termed virtual machines (VMs)
from the cloud layer to scale up the capacity of the edge layer,
with the goal of minimizing the total cost, including the pro-
cessing cost at the edge, the remote on-demand VMs cost, the
reserving and using remote reserved VMs cost.

D. Edge-Edge Collaboration

Generally, the edge-edge collaboration manner for resource
scheduling in edge computing does not arise in isolation.
Instead, it usually comes along with the things-edge collabo-
ration manner or the things-edge-cloud collaboration manner.
Through an edge-edge collaboration manner, there is one more
option for task processing. Many studies have investigated
this collaboration manner. Huang ef al. in [36] proposed a
parked vehicle edge computing (PVEC) architecture, where
idle resources of PVs can be fully utilized. In PVEC architec-
ture, VEC servers explore opportunistic resources from PVs to
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allocate workloads, and provide rewards to PVs for their assis-
tance. When necessary, VEC servers can also undertake the
residual workloads. As a result, VEC servers and PVs cooper-
ate to process task in an edge-edge collaboration manner. To
alleviate the workload on ESs, Na et al. in [55] proposed to
utilize edge gateways (EGs) at the edge layer to assist task pro-
cessing. A resource orchestration scheme among EGs and/or
between ES and EGs is also proposed, aiming to maximize
the efficiency of IoT systems. Alameddine et al. in [56]
studied the dynamic task offloading and scheduling problem
(DTOS) in multi-access edge computing, where application’s
task assignment and the order of execution are jointly consid-
ered. The tasks that cannot be processed by its corresponding
eNB-enabled ES can be offloaded to another ES in an edge-
edge collaboration manner to meet UE’s QoE requirement.
Miao et al. in [57] proposed an intelligent offloading strat-
egy based on the mobile-edge cloud computing architecture,
where tasks are scheduled among MDs, ESs, and the cloud
based on task prediction, aiming at reducing the total task
delay. Besides, the ES in this strategy can decide whether to
migrate its overload to other ES in an edge-edge collaboration
manner. Differently, Thai et al. in [58] proposed a cloud-
edge computing architecture to provide horizontal and vertical
collaborations, aim to minimize the total cost. Horizontal col-
laboration means that offloading operations can be conducted
among the nodes in the same tier, while vertical collaboration
means that offloading operations can be conducted among the
cross-tier nodes.

E. Edge-Cloud Collaboration

If most computing tasks are performed in the cloud com-
puting center in the considered three-tier architecture, long
latency will be produced, which can not satisfy users’ QoE.
The long latency problem can be improved by offloading some
or all of the tasks in the cloud center to the edge in an
edge-cloud collaboration manner, such as the edge accelerated
Web platform (EAWP) by Nippon Telegraph and Telephone
Corporation [61]. The edge-cloud collaboration manner can be
used in many applications. For example, mobile client shop-
ping has become popular where customers frequently operate
the shopping cart. The change of the shopping cart status
is first completed in the cloud center, and then the product
view is updated on the MD, which results in long latency. If
shopping cart data can be cached and relevant actions can be
performed on the edge, the new product view will be pushed
to the MD once the customer’s request reaches the edge, thus
greatly improving the customer’s QoE. Another example is the
video transcoding application. Online video traffic on MDs is
growing exponentially in network traffic [62], [63], and MUs
have high QoE requirements for streaming video. The video
transcoding has become an optimized technique for video data
transmission. However, since video transcoding consumes a
great quantity of computing and storage resources, it is typi-
cally executed in the offline media server (located in the cloud
layer). Unfortunately, this approach may increase the latency
when the video stream is redirected from the media server and
the real-time streaming service cannot be provided. To this
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end, Yoon et al. in [15] proposed to run the video transcoding
on ENs such as home WiFi access point. The experimental
results show that their solution is low-cost, transparent, and
scalable. Besides, Xu et al. in [59] proposed to regard the edge
layer as MDCs to provide edge computing services. A model,
named Zenith, was also proposed, where SPs can establish
resource sharing contracts with edge infrastructure providers,
aiming to increase resource utilization and minimize job exe-
cution latency. Similarly, Zhang et al. in [60] proposed to
deploy SPs in the edge layer to manage the task processing
for MUs. The SPs can schedule the task to the edge or the
cloud in an edge-cloud collaboration manner, aiming at pro-
viding high-quality services and maximizing the total profit of
all SPs.

For simplicity, a comparison of papers focusing on different
collaboration manner for resource scheduling are summarized
in Table III.

III. BASIC MODEL AND RESEARCH ISSUES

In this section, we first present the basic model for resource
scheduling in edge computing, which guides users to decide
whether to take offloading action based on the current com-
munication and computing resource state as well as their
QoE requirements. Then, we elaborate on the state-of-the-
art research on resource scheduling in edge computing from
three aspects: computation offloading, resource allocation, and
resource provisioning.

A. Basic Model

In a typical edge computing scenario, various tasks would
be generated from user devices. Generally, an arbitrary task
T can be described by five items, ie., T = {D, c¢,a,v,7},
where D is the data size of T, c represents the processing den-
sity (in CPU cycles/bit) of T, a (0 < v < 1) stands for the
parallelizable fraction of T, v denotes the ratio of the data size
of processing result to the data size of 7T, and 7 represents
the delay constraint of 7' [10]. The end-devices, CAVs and
UAVs, can be connected to the edge through various commu-
nication channels (such as 4G/5G, WiFi, LTE/DSRC, etc.) We
denote the wireless bandwidth assigned to the end-devices for
task T as B. The generated task 7' can be processed locally or
offloaded to the edge or the cloud to be processed. The offload-
ing action is taken based on different requirements for energy
consumption, latency, cost, and computing acceleration. Let A
(0 < X < 1) denote the offloading decision variable, which
represents the ratio of the offloaded data size to the total data
size of task T. If A =0, task T will be processed locally; if
A =1, task T will be fully offloaded; otherwise, the data with
size AD will be offloaded, the data with size (1—A)D will be
processed locally. In the following, we will demonstrate the
local processing part and offloading part, respectively.

1) Task T Processed Locally: The number of cores of the
users is denoted as np, and the processing capability (i.e., the
amount of CPU frequency in cycles/s) of each core assigned
for local computing as f ! then the power consumption of each
core for a user to process data locally is expressed as pl =
k1(f*)3, where 1 is a coefficient reflecting the relationship
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TABLE III

COMPARISON OF PAPERS FOCUSING ON DIFFERENT COLLABORATION MANNER FOR RESOURCE SCHEDULING. ACRONYMS USED IN THIS TABLE:

USER EQUIPMENT (UE), EDGE SERVER (ES), MOBILE DEVICE (MD), VEHICULAR EDGE SERVER(VES), FIXED EDGE SERVER (FES),
MOBILE EDGE RELAY SERVER (MERS), BASE STATION (BS), UNMANNED ARERIAL VEHICLE (UAV), EDGE GATEWAY (EG),

PARKED VEHICLE (PV), MOBILE USER (MU), MICRO DATA CENTER (MDC)

Collaboration ] R
Paper Manner Things Edge Research Issue Characteristics Methodology
Minimize the energy consumption of MDs
[47] Things-edge UE ES Offloading strategy by selecting an optimal set of computation Deep learning
components to offload to ESs.
. ES in local . Formulate the computation offloading problem | Game theory, Jacobi
[48] Things-edge UE and nearby Offloading strategy o . . 7
N as a potential game algorithm
. VES and Offloading strategy; Conslder the SFOChaSUC vehicle 'trafﬁc, QY— Reinforcement
[49] Things-edge UE . namic computation requests and time-varying .
FES resource allocation [ .. learning
communication conditions
Jointly optimize user association, power con- Compressive
[50] Things-edge UE UAV Resource allocation trol, computation capacity allocation and loca- sensing, search
tion planning method
Computation Jointly optimize transmit powers, processor
[51] Things-edge User MERS offloading; resource Y opumiz St POWEIS, proces Iterative algorithm
. speeds, bandwidth, and offloading ratio
allocation
Thines-cdee- Minimize all MDs’ energy consumption while
[52] c%ou d & MD ES Offloading strategy satisfying the MDs’ computation execution Game theory
time constraint
Things-edge- IIoT BS enabled . . Minimize energy consumption and computing
(53] cloud devices ES offloading strategy time of task processing Game theory
[14] Things-edge- User ES Resource allocation Cons@er the edge s 1ocal.processmg cost and Offline apd online
cloud capacity, the cloud’s multiple rental options algorithms
Thines-cdee- Smart The communication and computing resources, Latency
[54] ci)u d & device ES Resource allocation the task assignment among multiple layers are minimization
jointly coordinated algorithm
Things-edge; IoT X ) . " Consider computing capacities of ES and EGs, Lagrangian and
(531 edge-edge devices EG; ES Resource allocation and interference among EGs KKT condition.
Things-edge; Mobile . X . . Fully utilize the idle resource of parked vehi- Stackelberg game,
(361 edge-edge vehicles PVs; VES Resource allocation cles iterative algorithm
Things-edge; eNB enabled Comp utation The tasks from UEs is scheduled among dif- bender§ .
[56] UE offloading; resource . decomposition
edge-edge ES . ferent ESs .
allocation technique
[57] Thlrclig;-lgc.lge- MD ES Computation Integrate artificial intelligence (AI), local com- Deep learning,
iy offloading puting, edge computing, and cloud computing LSTM
edge-edge
58] Thlrcl;gosl—li:lc'ige— Smart ES Computation Vertical and horizontal offloading; workload branch-and-bound
edge-e d’ge device offloading and capacity optimization problem method
Things-edge- Place the video transcoding function at edge Video transcoding at
[15] cloud; MU ES Resource placement layer; provide higher video bit-rates without N d‘e g
edge-cloud causing video stall or rebuffering &
Things-edge- I, : e 1 o
(59] cloud: Smart MDC Resource allocation; SPs put resource in the edge layer; a latency- Auction-based
e dge—cl(;u d device resource provisioning | aware task scheduling mechanism contracts
Things-edge- SPs at the edge layer assign the tasks from Decentralized
[60] cloud; UE ES Resource allocation UEs to be processed in base staion or cloud multi-SP resource
edge-cloud center allocation

between processing capability and power consumption at the
end-device side [64].

Local computing time: Based on the Amdahl’s law [65],
the local computing time for (1 — A)D bits data of the task,
which consists of the computing time of the serialized part
tt = ¢(1 —a)(1 — \)D/f! and the computing time of the
parallelizable part t]l) = ca(1—N)D/f'ny, can be calculated as

/A 1 C(l — A)D «
Local energy consumption: The energy consumption for

local computing is formulated as

2
Bl =plth+ mplt =D -N(11) . @

2) Task T Offloaded to the Edge: The data of task 7' can be
offloaded to the edge through wireless communication links.
For the data transmission rate, we use r to denote it. The
data transmission rate can be characterized by various wireless
transmission models based on Shannon’s formula. For exam-
ple, Wang et al. in [66] model the path loss as d_ﬂ, where
d denotes the distance from the end-device to the edge, and
¥ denotes the path loss exponent. Based on Shannon’s for-
mula, when data is offloaded from the end-device to the edge
over the assigned wireless bandwidth B, the t2ransmission rate
can be expressed as | = Blogy(l + Zl‘gl‘g ), where Pj is
the transmission power of the end-devicg, h is the channel
fading coefficient, and wg denotes the white Gaussian noise
power.
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Transmission delay for offloading: Based on the analysis
above, the transmission delay for offloading AD bits of data
to the edge can be obtained by

AD
P = —. 3)
1
Transmission  energy  consumption  for  offloading:

Accordingly, the energy consumption of the end-device
for transmitting the offloaded AD bits of data is expressed as
ADP; . @

m

Computing time at the edge: After the A\D bits of data is
offloaded to the edge, the edge would process the data. Let ng
denote the number of cores assigned for task processing of the
edge, f¢ denote the processing capability (i.e., the amount of
CPU frequency in cycles/s) of each core (f¢ > f!). The power
consumption of each core of the edge to process data can be
expressed as p€ = ko (f¢)3, where ko is a coefficient reflect-
ing the relationship between processing capability and power
consumption at the edge side [64]. And the computing time
for the offloaded A D bits of data, which consists of the com-
puting time of the serialized part t§ = ¢A(1—a)D/f€ and the
computing time of the parallelizable part ;7 = cAaD/naf®,
can be formulated as

e e e cAD «
t —ts+tp—fe<1—a+n2>. 5)
Energy consumption at the edge: The energy consumption
of the edge for computing the A D bits of data is formulated as

E°® = p®tf + ngp®te = kocD(f%)?. 6)

3) Result Return: After the task T has been processed,
the result will be returned to the end-device. Generally, the
return process has been neglected in many works since the
processing result is usually very tiny [67]-[69]. As a general
model, we still consider the result return process. Let 5 denote
the data transmission rate in the result return process, then
similar to the ofﬂoadi2ng data rate, m» can be formulated as
ry = Blogy(1 + ?JZL
of the EN.

Transmission delay for result return: Based on the analysis
above, the transmission delay for v D bits result return can be
obtained by

E"™ = Py —

), where Po is the transmission power

D
pdown _ 'Y . 7
2
Transmission energy consumption for result return:

Accordingly, the energy consumption of the EN for trans-
mitting the yD-bits of processing result to the end-device is
expressed as

YDPy
N

Edoum _ P2tdown _ 8)

4) Total Delay: Based on the analysis above, the total delay
of processing task 7' is a combination of local computing time,
transmission delay for offloading, computing time at the edge,
and transmission delay for result return, which is formulated as

t = min {tl, tYP 4 € 4 tdown}. )
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5) Total Cost: The total cost of processing task 7T comes
from three aspects, including energy consumption, use of
bandwidth resources, and use of computing resources. For
the energy consumption, let o denote the weight coefficient
that indicates the energy consumption cost of one unit energy
during task computing and transmitting [70], then the energy
consumption cost can be formulated as

oenergy — Q(El +Etr + E¢+ Edoum>. (10)
For the bandwidth cost, let p; denote the cost of using per
unit of bandwidth per unit of time, the bandwidth cost can be
formulated as
g comm _ plB(tup + tdown). (11
For the computing cost, let po denote the cost of using per unit
of processing capability per unit of time, then the computing
cost can be formulated as
COMP = pongf©t€. (12)
Therefore, the total cost for processing task 7 can be
expressed as
C — Cenergy + CCO’ITL’ITL + Ccomp. (13)

6) Computing Acceleration: Before the task offloading
decision is made, some other QoE requirement such as
computing acceleration is also a key consideration. The com-
puting acceleration refers to the speedup of processing a
task at the edge when compared with computing it locally.
According to Amdahl’s law, the speedup can be obtained
if the (1 — A)D bits of task data is computed locally as
follows, S; = (l_aﬁ Similarly, the speedup can be
obtained if the AD bits of task data is computed at the edge

by the following formula, So = W However, when
!

task data is offloaded to the edge for processing, the actual

latency comes from computing delay and transmission delay.

In this circumstance, the actual computing acceleration is

expressed as,

l
A= .
tup | te tdown

(14)

According to the above basic model, many aspects should be
considered to achieve the different requirements of both end-
devices and the system for energy consumption, latency, cost,
and computing acceleration. The first aspect is to decide the
offloading variable ), i.e., an efficient computation offload-
ing. The second aspect is to decide the variables B, nj, ng,
f l, f¢, ie., resource allocation of the communication and
computing resources. The third aspect is to decide the associ-
ation between tasks and ENs and the placement of computing
resources, i.e., resource provisioning. The outline of the three
research issues is shown in Fig. 6 and is described in detail
below.
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Binary offloading

Computation i i
Partial offloading

Offloading
Communication resource
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Storage resource
Task allocation
Resource
Provisioning Resource placement

Fig. 6. Research issues of resource scheduling in edge computing.

device-to-edge

Vertical
offloading edge-to-cloud
cloud-to-edge
Direction Horizontal device-to-device
offloading
Computation edge-to-edge
Offloading
Binary offloading
Granularity Partial offloading
Fig. 7. A classification of computation offloading for resource scheduling

in edge computing.

B. Computation Offloading

The computation offloading is a very important research
issue for resource scheduling in edge computing, which brings
services to the proximity of data source [34]. This subsection
reviews the research on this issue. As shown in Fig. 7, the
computation offloading can be broadly classified on the base
of: a) the direction of offloading, namely from device to edge,
from edge to cloud, from cloud to edge, from device to device,
and from edge to edge, and b) the granularity of offloading,
namely binary offloading and partial offloading.

1) Direction: Since end-devices in the thing layer are
mostly resource-constrained, resource-intensive tasks need to
be fully or partially offloaded to ENs with powerful comput-
ing resources. The computation offloading from end-devices
to ENs compensates for the deficiency of end-devices in com-
puting performance, storage, and energy efficiency. Also, the
computation offloading from end-devices to ENs can allevi-
ate the overload of the cloud computing center and reduce the
delay caused by wireless transmission. For example, video data
from surveillance cameras can be offloaded to the EN for low-
delay and privacy-protecting analysis and process, compared
with being offloaded to the cloud computing center. In addi-
tion, the upward offloading has also promoted the development
of the super low-delay applications such as video services and
CAVs. The application data of real-time perception need to be
offloaded to ENs for rapid processing, which guides vehicles
to take right driving actions. Similarly, if ENs are unable to
process the task data offloaded from end-devices in a timely
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manner, it can be offloaded to the cloud center. The com-
putation offloading ways both from end-devices to ENs and
from ENs to the cloud center can be referred to as upward
offloading.

The computation offloading also concentrates on downward
offloading, which means the offloading from the cloud center
to the edge. In the edge-cloud collaboration manner discussed
in the last section, this kind of offloading is adopted. Both
upward offloading and downward offloading are regarded as
vertical offloading. In addition to vertical offloading, the com-
putation offloading manner also includes horizontal offloading.
There are two research issues in horizontal offloading. The
first one is that end-devices can offload their resource-intensive
tasks to other end-devices with idle computing resources. The
second is that one EN can also migrate their task data to
other ENs for processing. Thus, there are in total five different
offloading directions in the vertical offloading and horizontal
offloading, which will be discussed in the following.

a) Device-to-edge: For applications that require power-
ful capacity or edge data aggregation, various end-devices will
offload their tasks to ENs. This offloading direction is the
focus of computation offloading, and it is operated under the
things-edge collaboration manner as discussed in Section II-B.
The offloading from end-devices to ENs can achieve differ-
ent QoS and QoE requirements for end-devices. For example,
for reducing the task processing latency, Chen et al. in [87]
considered to offload the computation tasks from MDs to
small-cell base stations (BSs) with cloud-like computing and
storage capabilities, with the aim of minimizing the long-term
system delay. For reducing energy consumption, Guo et al.
in [88] proposed to offload the computation tasks from MDs to
small BSs, and an efficient computation offloading scheme by
jointly considering offloading decision-making and resource
allocation was proposed, aiming at reducing the energy con-
sumption of MDs. Also, Guo et al. in [88] considered an
ultra-dense edge computing network, where MDs’ energy
consumption is minimized by offloading their tasks to ENs.
Besides, Josilo and Dan in [89] proposed a computation
offloading scheduling scheme to determine whether to offload
the tasks of end-devices to ENs, aiming to minimize the cost
that is a combination of delay and energy consumption.

b) Edge-to-cloud: Generally, the tasks offloaded from
end-devices are processed by computing nodes in the edge
layer. The computing nodes, including cloudlets, ENs, BSs,
mini data centers, etc., can provide different capacities. If the
task data in the edge layer cannot be processed by the com-
puting node in time, they can be further offloaded to the cloud
center to achieve a balanced overload. This kind of offload-
ing direction, from the edge to the cloud, is actually operated
under the edge-cloud collaboration manner, as discussed in
Section II-E. For example, in the area of CAVs, Zhang et al.
in [90] proposed to improve the system utility by utilizing a
multi-level offloading scheme among ENs and cloud servers.
Also, Zhao et al. in [91] considered to jointly optimize the
offloading decision and resource allocation by an edge-cloud
collaborative offloading approach.

c) Cloud-to-edge: This kind of offloading direction is
also operated under the edge-cloud collaboration manner as
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discussed in Section II-E, which brings computation tasks from
the distant cloud to the edge to achieve lower data transmission
latency, thereby shortening the application response time. The
typical issues of the cloud-to-edge offloading mainly include:
(1) video transcoding on ENs [15]; (ii) application cloning
from cloud to edge to provide users with better QoE [92];
(iii) data replication on the edge [59], [93]-[95]; (iv) edge
discovery and management, where workloads are offloaded
from the cloud to the chosen ENs and the orchestration across
multiple ENs is evaluated [96], [97].

d) Edge-to-edge: The edge-to-edge offloading is actually
operated under the edge-edge collaboration manner, as dis-
cussed in Section II-D, which can alleviate the workload of
some overloaded EN by offloading (or migrating) some work-
loads to a peer. The typical issues of the edge-to-edge offload-
ing mainly include: (i) task scheduling, which can orchestrate
the task processing among different ENs [55]-[58]; (ii) ser-
vice migration, by which services are dynamically migrated
across multiple heterogeneous ENs [98], [99]; (iii) offload for-
warding, in which an EN is regarded as a relay to forward
workloads to neighboring ENs [100].

e) Device-to-device: The device-to-device offloading can
be operated under both the things-edge collaboration manner
and the things-edge-cloud collaboration manner, as discussed
in Section II-B and Section II-C, which offloads the work-
loads from one end-device to a peer by making full use of
idle resources. For example, Luo er al. in [101] proposed
a collaborative task data scheduling scheme in VEC, where
the computation tasks of vehicles can be not only processed
locally, i.e., offloaded to RSUs, but also can be migrated to
other vehicles with idle computing resources.

2) Granularity: As one of the important research issues
in computation offloading, the offloading decision-making
problem focuses on whether and how much to offload.
Depending on whether the computation task is dividable or
not, the granularity of offloading can be classified into two cat-
egories: a) binary offloading, and b) partial offloading, which
will be presented in the following.

a) Binary offloading: Binary offloading, also known as
“0-1 offloading”, means the whole computation task is either
processed locally or offloaded to elsewhere. “0” and “1”
are the indicators of whether the task is offloaded or not.
Generally, “0” means the whole task is processed locally, and
“1” means it is offloaded to elsewhere [53], [75]. When the
whole task is processed locally, the computing time, energy
consumption, and the cost of processing task are determined
by the local capacity. When the whole task is offloaded to
other nodes to process, the computing time mainly includes
task transmission time and task processing time. Similarly,
energy consumption mainly includes transmission energy con-
sumption and processing energy consumption. The cost mainly
includes transmission cost and processing cost. From this point
of view, the factors that affect the offloading performance
include wireless channel conditions, wireless bandwidth, and
processing capability of the destination node (i.e., the node to
which the task is offloaded). The research on binary offload-
ing involves in the association between tasks and destination
nodes [102]-[106], which refers to the determination of the
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offloading of a specific task to a destination node, among
various tasks and destination nodes.

b) Partial offloading: Partial offloading allows flexible
components/data partitioning, which means that a task can be
divided into separated parts [17], [107]-[109]. The research
on partial offloading is to determine how much and in what
way of the whole task can be offloaded to the destination node.
Generally, a ratio known as “offloading ratio” is set to indicate
the proportion of offloading part of the task. Partial offload-
ing involves two parts of task processing, the local processing
part and the offloading part. Accordingly, the task process-
ing performance is jointly determined by the computing time,
energy consumption, and the cost of processing task locally
and at the destination side. Actually, in addition to deciding
and optimizing the offloading ratio to achieve various QoS
requirements, the study of partial offloading also involves in
the association between the offloading part of the task and the
destination node [110].

In most existing works, neither binary offloading or par-
tial offloading issues can be addressed alone, and other issues
such as resource allocation [111]-[114] and resource pro-
visioning [115], [116] are jointly studied with computation
offloading, which will be presented in later sections. To enable
readers to grasp basic ideas of computation offloading on
both binary offloading and partial offloading, a comparison of
papers focusing on this research issue is presented in Table I'V.

C. Resource Allocation

As another important research issue in resource scheduling,
resource allocation studies how to reasonably and effectively
allocate resources in the edge computing system to complete
offloading and task processing. Generally, the main resources
involved in the current research on resource allocation are
computing, communication, and storage resources. Computing
resources typically refer to CPU cycles and resource blocks
(VMs/containers). Communication resources refer to wire-
less resources including bandwidth, spectrum, power, and link
used for data transmission during computation offloading.
Storage resources are used to cache computation tasks and
popular content (e.g., on-demand video, AR/VR, road surveil-
lance, etc.) to the edge of the network, reducing the service
response time and the burden on the network. Some research
on resource allocation only focuses on allocating one kind of
resource while most research considering the joint resource
allocation, which will be elaborated on in the following.

1) Single Resource: The existing works involved in the
single-resource allocation mainly focus on the allocation of
computing or communication resources. In the computation
offloading decision-making problem, many works consider
the allocation of communication resources. Like the works
in [117] and [118], both focused on communication resources
and studied how to allocate the transmission power during the
offloading process, with the goal of minimizing the system’s
energy consumption. Differently, Li et al. in [119] studied
the channel selection for task offloading. The effect of multi-
channel interference on the energy efficiency of task offloading
was taken into account. Obviously, the most important thing in
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TABLE IV
COMPARISON OF PAPERS FOCUSING ON COMPUTATION OFFLOADING. ACRONYMS USED IN THIS TABLE: VIRTUAL MACHINE (VM)

Gran. Paper Objective Research Content
(71] Delay, energy consumption a) Ofﬂ(')admg decision; b) transmission power allocation; ¢) CPU frequency
allocation;
(72] Utility a) Ofﬂ.oad.lng proportion determining; b) power allocation; c) energy
o0 harvesting;
._g [73] Energy consumption a) Task-destination association; b) offloading decision;
8 . a) Task-destination association; b) offloading decision; c) task ready time
= [74] Energy consumption d L
= etermining;
o [75] Utility a) Task-destination association; b) offloading decision;
E . a) Transmission power allocation; b) offloading decision; ¢) CPU clock
= [76] Energy consumption .
a4 allocation;
[77] Latency. enerey consumption a) Task-destination association; b) wireless channel allocation; ¢) compu-
¥ gy consump tation capability allocation;
[78] Energy consumption a) Task-destination association; b) computing capability allocation;
a) Task-destination association; b) offloading workload amount determin-
[79] Revenue . .
ing; c) energy harvesting;
o0 [80] Delay, energy consumption a) Computing resource allocation; b) offloading ratio determining;
g [81] Latency a) Task-destination association; b) offloading ratio determining;
g [82] Delay a) Task-destination association; b) offloading decision;
= . a) Offloading data amount determining; b) transmission power allocation;
5 [83] Energy consumption e . ’ ’
bt ¢) transmission time allocation;
< P arr aQQ] - adi a1 mi B an<mieel
g [84] Latency a) Subcarrier assignment; b) offloading ratio determining; c) transmission
&£ power allocation;
[85] Execution time a) Subtask placement; b) topology/schedules of the IoT tasks;
[86] Latency, resource utilization a) Task placement; b) VM instance provisioning;

the offloading process is the allocation of computing resources.
The work in [120] designed the selective offloading scheme
for IoT devices, and it studied how to allocate the best EN for
offloading tasks to minimize energy consumption. Similarly,
Xu et al. in [121] studied the computation offloading problem
for IoT-enabled cloud-edge computing, and they focused on
how to allocate the computing resource for tasks to mini-
mize the execution time and energy consumption for MDs.
Also, some studies only consider storage resources in terms of
caching data [122] and caching service [123], [124]. Yu et al.
in [122] proposed a collaborative offloading with data caching
enhancement strategy to minimize the total delay. Caching
services such as databases or libraries on ENs for task execu-
tion can effectively reduce the total delay. The study in [123]
focused on dynamic service caching and task offloading, and
proposed an online algorithm based on Lyapunov optimization
and Gibbs sampling.

2) Computing and Communication (CC): The offloading
process often involves the joint allocation of communication
and computing resources. Many existing works have studied
this topic [125]-[134]. Guo et al. in [126] proposed an adap-
tive resource allocation framework for MEC, which applied the
idea of blockchain into the framework design. They formulated
an optimization problem for spectrum and block allocation.
The study in [127] formulated the problem of optimizing the
joint allocation of computing resources on ENs and radio
resources under the non-orthogonal multiple access (NOMA)
protocol and used an efficient layer algorithm to solve it.
Likely, to maximize the total revenue, Wang et al. in [129]
studied the optimization problem for bandwidth and compu-
tation allocation with the QoS-guaranteed constraint, and they
proposed an algorithm based on alternating direction method
of multipliers (ADMM) to solve it. Under the transmission
protocol of time division multiple access (TDMA), the authors
in [130] studied how to assign the time and rate of local

users for task offloading and how to allocate computation
frequency for task execution, aiming to minimize the computa-
tion latency. Similarly, the work in [131] also adopted TDMA
transmission protocol. Millimeter-wave (mmWave) communi-
cation as one of the promising transmission protocols was
applied in the work [132]. This paper formulated the joint
beamforming vectors at the users and computation ratios at
ENs allocation problem to minimize the system delay, and
proposed a penalty dual decomposition technique to solve this
optimization problem.

3) Computing, Communication, and Storage (CCS): Many
works have considered communication, computing, and stor-
age resources simultaneously in the resource allocation
problem [8], [67], [135]-[137]. In recent years, the preva-
lence of edge intelligence has attracted widespread attention
from academia and industry. In the work [135], the authors
designed an In-Edge AI framework for optimizing comput-
ing, communication, and caching allocation. They utilized both
deep reinforcement learning and federated learning (FL) tech-
niques to optimize the edge system’s performance. Liang et al.
in [136] studied the bandwidth provisioning and content source
selection problem by introducing caching and computing func-
tions in MEC. They proposed a decentralized approach based
on ADMM to solve it. Likely, the work in [67] addressed
the optimization problem for joint computation offloading,
resource allocation, and content caching, in which computing,
spectrum, and caching resources were considered simultane-
ously. Particularly, all resources in the study [8] were in the
form of virtual resources. The authors formulated a joint vir-
tual resource (including spectrum, caching, and computing)
allocation problem, intending to maximize the system’s utility.
Similarly, the authors in [137] also studied the virtual resource
allocation problem in which the communication, computation,
and caching resources can be shared among all users. Besides,
they presented a distributed algorithm based on ADMM to
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TABLE V
COMPARISON OF PAPERS FOCUSING ON RESOURCE ALLOCATION. ACRONYMS USED IN THIS TABLE: NON-DOMINATED SORTING GENETIC
ALGORITHM (NSGA), DEEP Q-NETWORK (DQN), ALTERNATING DIRECTION METHOD OF MULTIPLIERS (ADMM), FEDERATED LEARNING (FL)

Paper Computing Communication Storage Algorithm Objective

[117] X v X Majorization minimization method Energy consumption

[118] X v X Genetic algorithm Energy consumption

[119] X v X Auction-based approach Energy consumption

[121] v X X NSGA-IIT algorithm Delay, energy consumption

[122] v X X Game-based Delay

[123] v X X Lyapunov optimization Delay

[126] v v X DQN Performance

[127] v v X Many-to-one matching algorithm Cost

[129] v v X ADMM Revenue

[130] v v X Heuristic-based algorithm Latency

[132] v v X Penalty dual decomposition technique Delay

[135] v v v DQN, FL Performance

[136] v v v ADMM Energy consumption
[8] v v v ADMM Utility

[137] v v v ADMM Utility

address the formulated problem. Moreover, a few research
focus on joint communication and storage resource allocation
problems [138], [139].

A comparison of papers focusing on resource allocation is
presented in Table V. It can be observed that communication,
computing, and storage resources are rarely allocated individ-
ually in resource scheduling. Many works combine two or
three of them to model and jointly optimize the allocation
simultaneously.

D. Resource Provisioning

Since loads of users’ requests vary over time, edge com-
puting systems experience constant fluctuations in workload.
These fluctuated workloads may cause problems such as over-
provisioning or under-provisioning of edge resources. In the
case of over-provisioning, where the resources allocated to
some users are greater than the actual load demanded by
users, the edge system may be unnecessarily costly. Besides,
in under-provisioning, the resources allocated to users for
the service are less than the actual load demanded by users,
resulting in a poor QoS or even the inability to complete
users’ tasks. Therefore, allocating the appropriate amount of
edge resources to users dynamically to minimize the system
cost and meet users’ QoS requirement is an important issue.
Based on the analysis and summary of current research,
the studies on resource provisioning in edge computing can
be divided into two categories: a) fask allocation, which
is a passive resource provisioning from users’ perspective.
The task allocation problem in edge computing refers to the
optimal placement and matching plan between users’ tasks
and edge resources; b) resource placement, which is an active
resource provisioning from resource providers’ perspective.
The resource placement mainly includes cloud service decen-
tralization to the edge, optimized deployment of ESs, quantity
allocation of edge resources, and virtual edge resource place-
ment issues. In the following, we will elaborate on the two
aspects.

1) Task Allocation: Yang et al. in [140] studied the cloudlet
placement and task allocation problem. Then, they formed
a mixed integer linear programming (MILP) problem and
used the benders decomposition-based approach to solve it.
Before task allocation, the authors investigated the resource
placement, aiming to calculate the task delay and energy
consumption of different ENs. It provides systematic condi-
tions for task allocation. The work in [141] focused on data
management in edge computing, and it presented a multi-
layer scheduler considered the various context dimensions
of data. In the multi-layer scheduler design, the tasks gen-
erated by data are allocated based on the current context
and the system state during runtime. Fan ef al. in [142]
proposed a deadline-oriented task allocation mechanism and
formed a task scheduling problem as a multi-dimensional 0-1
knapsack problem. They adopted an efficient task allocation
algorithm based on ant colony optimization to increase the
system’s total profit while satisfying the deadline and resource
constraints of the task. There are some works on applica-
tion placement, which focus on assigning tasks from users’
applications to the appropriate edge resources for process-
ing [143]-[145]. It is essentially a task allocation problem.
In [143], the authors designed a third-party platform respon-
sible for allocating MUs’ application tasks to edge resource
providers. MUs subscribe to the platform that collects the
information of ENs to place tasks on ENs optimally. A pro-
gramming algorithm was proposed to select the best task
placement server from the users’ perspective to avoid task
migration, thus minimizing the time cost. From the platform’s
point, the efficient heuristic algorithm is presented to schedule
tasks to minimize the total cost. Likely, Mahmud et al. in [144]
proposed a QoE-aware scheme for application placement. The
proposed scheme prioritized different tasks of applications and
updated the capabilities of ENs according to their current sta-
tus, thus facilitating optimal task allocation decisions. Later,
for the edge-cloud environment, they proposed another appli-
cation placement policy [145], aiming to maximize the edge
system’s profit and ensure the user’s QoE.
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2) Resource Placement: In terms of resource placement,
a portion of works focus on how to place ENs [146], [147],
[154]-[156]. The location and number of edge services have a
crucial impact on both the cost of the edge computing network
and users’ average latency. The study in [146] presented a cost-
aware cloudlet placement scheme for MEC, considering the
cost of cloudlet deployment and the average latency of users.
A Lagrange-based heuristic algorithm was used to achieve
sub-optimal solutions, and a workload allocation scheme was
designed to minimize the delay between users and cloudlet
considering the mobility of users. The edge server placement
has raised concerns on the expenditure of deployment and
operation, the current backhaul network capacity, and non-
technical placement constraints. In [147], the authors proposed
a new framework for edge server placement aiming to reduce
the overall costs of deploying and operating edge comput-
ing networks. The framework addressed the server placement
problem by implementing service placement and optimization
strategies.

Notably, there are lots of current research focusing on
service placement. On the one hand, some research study
decentralized cloud services to the edge [148], [157]-[161].
Nowadays, many data-intensive tasks are computed at the
edge. If the data required for the task is not stored at the
edge, it needs to be downloaded from the cloud, which may
cause additional delay. Therefore, it is valuable to study how to
decentralize cloud data to the edge. Jin et al. in [148] proposed
an efficient graph-based algorithm for the data placement
problem, aiming to maximize the cache hit rate to reduce the
task delay. Combining edge computing and cloud computing
to place data for scientific workflows to minimize the trans-
mission time across different data centers, the authors in [158]
proposed a self-adaptive discrete particle swarm optimization
(PSO) algorithm for the data placement problem. The proposed
algorithm considered the bandwidth, the number of the edge,
and the storage capacity of the edge that affect transmission
delay. Similarly, Chen et al. in [160] also explored the data
placement problem for scientific workflows, and they proposed
the model based on GA and PSO to solve the problem. On the
other hand, more works have studied the service or applica-
tion placement at the edge based on users’ requirements [150],
[151], [162]-[168]. The objective functions and constraints in
those works are determined by considering various aspects of
the edge computing environment, such as the application (or
service) architecture, the edge architecture or the edge-cloud
architecture, the network condition, and the network topology.
In [150], the authors proposed a service placement mechanism
based on a logical edge network to meet users’ needs and the
resource constraints of ENs. The proposed service placement
mechanism aimed to minimize the number of services placed
on ENs to optimize the resource utilization of ENs. The work
in [151] studied the load distribution and layout of scalable
IoT services, including vertical and horizontal, to minimize the
possibility of QoS violations due to edge computing resource
constraints. Similarly, the study [166] introduced the problem
of dynamic edge computing service placement, which was
designed to dynamically deploy IoT services on edge resources
to meet QoS requirements such as service delay and bandwidth
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usage. At present, the difficulty and trend of this subject are
how to place tasks with data dependencies when the service or
application is composed of multiple dependent tasks. Usually,
in the dependent category, related works modeled their service
or application by Directed Acyclic Graph (DAG) [169]-[173].
The placement purpose of their research is to find a group of
tasks for scheduling, by which the execution time of service or
application and energy consumption of MD become reduced.

Although built on less powerful hardware, edge comput-
ing faces similar challenges as cloud computing in effectively
managing the hardware resources. Therefore, edge computing
also employs virtualization as one of its fundamental tech-
nologies. The virtualization technology, no matter in the form
of VMs or containers, provides flexible and reliable services
for edge computing at a high level. VM placement is a pop-
ular research in resource provisioning at the edge, which can
be regarded as a process to find the optimal network path to
allocate VM. Therefore, the task can be quickly executed, and
energy usage can be reduced. Li and Wang [154] proposed the
method to find out a VM placement scheme that can reduce
the total energy consumption and keep the access delay in a
reasonable range. In [174], the authors exploited the prediction
of users’ movement. The prediction is used for dynamic VM
placement and to find the most suitable communication path
according to expected users’ movement. To date, there are
several pioneer projects proposed by the industry that aims at
building general-purpose edge computing frameworks, includ-
ing OpenStack [175], Kubernetes [176], and OpenEdge [177].
Applying container techniques to the edge environment is
a natural trend because of the facts of rapid construction,
instantiation, and initialization of virtualized instances [178].
Morabito [179] evaluated the performance of container-based
virtualization on IoT devices on the edge. They conducted
more practical experiments on Advanced RISC Machine
(ARM)-based IoT end-devices (Raspberry Pi). Performance
evaluation on the CPU, memory, disk I/O, and network shows
that container-based virtualization can represent an efficient
and promising way to enhance the features of edge architec-
tures. In [180], the authors found that inter-container commu-
nications, and container management consume significant CPU
resources by experiments. Then, a joint task scheduling and
containerizing scheme are introduced to tackle this problem.
In the past two years, research on resource provisioning based
on serverless computing architecture has attracted much atten-
tion [152], [153], [181]. Serverless computing is an emerging
paradigm for running user-specified functions on resource
providers with infinite scalability. Suresh and Gandhi in [152]
proposed Fnsched, a novel resource provisioning framework
that aims to meet users’ performance requirements while min-
imizing the cost of SPs. Fnsched implemented the autoscale
ability by carefully regulating resource usage on each resource
scheduler. Besides, the authors in [153] proposed an MPSC
framework for serverless computing that supports multiple
edge resource providers. MPSC monitored the performance
of serverless providers in real-time and dispatched users’
application tasks to appropriate resources.

A comparison of papers focusing on resource provisioning
is presented in Table VI. Since the virtualization technology
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TABLE VI

SERVICE (Q0S), MIXED INTEGER LINEAR PROGRAMMING (MILP), EDGE CLOUD (EC), NETWORK FUNCTION VIRTUALIZATION (NFV)

Paper Research Content Solution Objective What’s to be scheduled
[140] Cloudlet placement and task allocation | Benders decomposition-based algorithm | Energy consumption | Task from users
[141] Data placement and task allocation Multi-level scheduler Latency, overhead Data
[142] Task allocation Ant colony optimization Profit Users’ tasks
[143] | Application placement Game model Cost Uses’ applications
[144] Application placement Separate Fuzzy logic based approaches QoE Uses’ applications
[146] Cloudlet placement Lagrangian heuristic algorithm Delay Cloudlet
[147] EC placement MILP mathematical model Cost EC
[148] Data placement Graph-based iterative algorithm Cache hit rate Data
[149] NFV placement Matching game Delay NFV
[150] Service placement Logical fog network Resource utilization Service
[151] Service placement Genetic-based algorithm QoS Service
[152] Resource provisioning Serverless scheduler Cost CPU cycles
[153] Service provisioning Adaptive scheduling QoS Service
Convex optimization allocation, and resource provisioning are typically non-convex
) . or NP-hard problems. A significant portion of studies
Approximate algorithm .
; transform the non-convex problem into a near-convex or
Centralized Methods Heuristic algorithm P : :
convex optimization problem, thus adopting a feasible convex
Machine learning optimization method. Deng e al. in [46] studied the offloading
Research Game theory problem under the green and sustainable MEC framework for
e Matching theory the 10T system. To minimize the response time, they proposed
Aucti a DPCOEM algorithm based on the Lyapunov technique and
t . . . ..
Distributed Methods uetion achieve approximately optimal performance. Similarly, some
Federated learning research [87], [182]-[186] also used Lyapunov technique
Blockchain to solve the optimization problem. Lyapunov optimization,
as a stochastic optimization approach, can enable online
Fig. 8. Research techniques of resource scheduling in edge computing. decision-making while preserving sub-optimal performance.

brings high flexibility and resource isolation to the edge, it can
be predicted that more research will be devoted to resource
provisioning based on container-based or serverless-based
edge computing architecture in the future.

IV. KEY TECHNIQUES AND PERFORMANCE INDICATORS

Advanced scheduling strategies and techniques are indis-
pensable for realizing optimal scheduling of edge computing
resources and thus meeting the QoS and QoE requirements
of both end-devices and the system. In recent years, many
state-of-the-art resource scheduling techniques have emerged.
Based on whether a control center is needed to collect global
information, resource scheduling can be operated in cen-
tralized manner or distributed manner. Generally, centralized
methods mainly include convex optimization, approximate
algorithm, heuristic algorithm, and machine learning; dis-
tributed methods mainly include game theory, matching theory,
auction, federated learning (FL), and blockchain, as shown in
Fig. 8. In the following, we elaborate on the centralized and
distributed resource scheduling methods before summarizing
six performance indicators, i.e., latency, energy consumption,
cost, utility, profit, and resource utilization.

A. Centralized Methods

1) Convex Optimization: The optimization models
developed in the issues of computation offloading, resource

The work [187] modeled the problem of resource allocation
in MEC as a mixed-integer program. Due to the NP-hardness
nature of the formulated problem, the authors proposed a
decomposition method to solve it. They decomposed the
original problem into two sub-problems, one is the workload
assignment and another is the edge node dimensioning. Also,
the studies in [188], [189] employed the decomposition
method to solve the complicated optimization problem.
The authors in [40] investigated the computation offloading
problem in the UAV scenario, and the formulated non-convex
optimization problem was solved using the Dinkelbath algo-
rithm and successive convex approximation (SCA) technique.
Similarly, Liu et al. [190] also used the SCA technique to
solve a non-convex optimization problem. The idea of SCA is
to iteratively solve a series of convex optimization problems
similar to the original non-convex problem, to find a local
optimal solution of the original problem. Yang et al. in [191]
formulated a non-convex problem for computation offloading
and data caching. To solve the problem, they transformed it
into a near-convex problem and then designed an algorithm
based on ADMM. ADMM is a simple method for solving
decomposable convex optimization problems. Using the
ADMM algorithm, the original problem can be equivalently
decomposed into some solvable sub-problems, which can be
solved in parallel. Finally, the solutions of the sub-problems
were coordinated to obtain the global solution of the original
problem. Besides, the ADMM technique was also utilized
in [192], [193].
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Summary: The main techniques of convex optimization
include the Lyapunov technique, decomposition technique,
SCA technique, and ADMM technique. In general, techniques
based on convex optimization have the following advantages:
a) mature, and widely used; and b) sub-optimal optimization
results can be easily obtained. However, the calculations of
methods based on these techniques are often complex and
challenging to implement in real systems.

2) Approximate Algorithm: In addition to the transfor-
mation to traditional convex optimization methods, a large
number of studies adopt various approximation algorithms
to solve the non-convex and NP-hard problems in resource
scheduling. For MEC systems, Badri et al. in [194] built
the application placement problem as a multi-stage stochastic
programming problem. They adopted a parallel sample aver-
aging approximation (SAA) algorithm to solve this problem
and obtained an effective solution. In [195], the computa-
tion problem was modeled as an infinite horizon average cost
Markov decision process (MDP) process and was approxi-
mated to a virtual continuous-time system before a multi-level
offloading policy was proposed. The work in [196] stud-
ied the edge-cloud placement problem and described it as a
multi-objective optimization problem, which was solved by an
approximate method using k-means and hybrid quadratic pro-
gramming. Lu et al. in [197] modeled a multi-user resource
allocation problem in edge computing and utilized an approx-
imation algorithm for local search to solve the NP-hard
problem. The work in [198] studied the problem of max-
imizing revenue by placing multiple services in an edge
system. The authors first proved that the formulated problem
is NP-hard and then proposed a deterministic approximation
algorithm to solve it.

Summary: The basic idea of the approximate algorithm is
utilizing the existing approximate methods, such as relaxation,
bounded, local search, and dynamic planning techniques,
to solve the established NP-hard problems. In general, the
approximate algorithm has the following advantages: a) sim-
ple, flexible, and easy to implement; and b) not difficult to
design a local search algorithm for most difficult NP-hard
problems. However, the approximation algorithm has some
disadvantages: a) easy to fall into a local optimum; and b) the
performance of the solution can not be guaranteed due to
randomness.

3) Heuristic Algorithm: Nowadays, one of the most popular
ways to solve NP-hard problems is utilizing heuristic algo-
rithms including simple heuristics and meta-heuristics. Using
principles similar to bionics, heuristic algorithms abstract some
phenomena in nature and animals into algorithms to deal
with corresponding problems [199]. In resource scheduling
research, most of the current works utilize greedy algo-
rithms while some works utilize local search algorithms.
Huang et al. in [161] modeled a multi-replica data place-
ment problem for MEC. They analyzed the complexity of
the formulated problem and designed a greedy strategy to
solve the problem. Similarly, the works in [116], [200] also
employed the greedy idea to solve the NP-hard problem. The
study in [155] jointly studied the problem of edge server
placement and application allocation, and they proposed a
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heuristic algorithm based on local search to effectively solve
the problem. Likely, the local search heuristic algorithm was
also used in [201]. Meta-heuristics in heuristics is widely
used in various fields, including genetic algorithm, ant colony
algorithm, PSO, simulated annealing, and tabu search. Canali
and Lancellotti in [202] designed a heuristic algorithm based
on a genetic algorithm for the service placement problem.
There are also some works [88], [121], [203]-[206] utilizing
the non-dominated sorting genetic algorithm (NSGA) to solve
the formulated multi-objective optimization problem. Hu and
Li in [205] formulated the request scheduling problem as
a mixed-integer nonlinear program. The problem was ana-
lyzed as a double decision-making problem, and the authors
presented an optimization approach based on NSGA to address
the problem. Besides, the authors in [207] proposed a PSO-
based heuristic strategy to solve the joint problem of service
placement and task provisioning. The study in [208] designed
a heuristic algorithm based on tabu search for task schedul-
ing in IoVs. In [209], the authors studied the problem of
computation offloading and resource allocation and solved the
upper-level optimization problem with an ant colony based
heuristic algorithm.

Summary: The research that utilizes heuristic algorithms
to solve NP-hard problems in resource scheduling tends to
employ greedy-based and genetic-based algorithms. The sim-
ple heuristic algorithm is efficient, but easy to fall into a
local optimal solution. The meta-heuristic algorithm has too
many parameters, which makes it difficult to reuse the calcu-
lation results. Also, it is impossible to adjust those parameters
quickly and effectively.

4) Machine Learning: In recent years, advanced Al tech-
niques have been applied in various fields due to the devel-
opment of machine learning, such as deep learning and
reinforcement learning techniques. In the research on resource
scheduling for edge computing, traditional methods (e.g.,
convex optimization and approximation algorithms) are usu-
ally static solutions to complex optimization problems. They
cannot achieve optimal decisions based on dynamic environ-
ments. Generally, the interaction with the edge environment
during resource scheduling can be modeled as an MDP
problem, which can be effectively solved by the reinforcement
learning technique. Therefore, many studies utilize reinforce-
ment and deep learning methods for resource scheduling
problem in edge computing. In [210], the authors modeled
the online offloading problem as an MDP and proposed a
deep Q-network (DQN) technique to accommodate dynamic
environments and solve the problem. Ning er al. in [211]
utilized the DQN technique to design an intelligent schedul-
ing approach for VEC. Similarly, the works in [214]-[216],
[217] and [218] respectively studied the computation offload-
ing, resource allocation, and request scheduling problems of
IoT users, and all utilized the DQN technique to learn the
optimal strategy. Lu et al. in [212] utilized the LSTM network
layer and candidate network combined with the actual edge
computing environment to improve the DQN algorithm and
achieve better performance. The work in [213] studied the
computation offloading optimization problem and proved it
is NP-hard before proposing an offloading algorithm based
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on DQN and FL. Besides, the work in [219] described
the offloading decision problem as a multi-label classifica-
tion problem and utilized a deep supervised learning tech-
nique. Chen et al. in [220] proposed a novel prediction-
enabled feedback control with reinforcement learning based
resource allocation method, which effectively obtain adap-
tive and efficient resource allocation for cloud-based software
services.

Summary: Generally, the machine learning technique used
for resource scheduling in edge computing has the following
advantages: a) strong parallel processing capability; b) strong
distributed storage and learning capability; and c) has the func-
tion of associative memory and can fully approximate the
complex nonlinear relationship. However, it also has the fol-
lowing disadvantages: a) require a large number of parameters;
b) a black-box process, and the learning process cannot be
observed, and the output results are difficult to interpret, which
will affect the credibility and acceptability of the results; and
c) long learning time, and may fall into a local optimal solution
or may not even achieve the learning purpose.

B. Distributed Methods

1) Game Theory: Game theory is a powerful framework to
analyze the interactions among entities that act for their self-
interests with low complexity [221]. In a game, all players are
rational and aware that their interests are affected by others
and also affect others. All players can change their actions in
response to others’ actions to maximize their own interests.
Li et al. [222] proposed a game-theoretic scheme to optimize
the offloading strategy considering computing resource and
bandwidth to minimize the system cost. Liu and Liu [223] for-
mulated a Stackelberg game to model the interactions between
ENs and users, where the EN determines the price at which
services are provided to maximize its revenue, and users make
offloading decisions based on the price to minimize their own
costs. Also, Ranadheera et al. [224] developed a distributed
mechanism for computation offloading by utilizing a minority
game-based method, aiming to guarantee users’ QoE require-
ment for latency and energy-efficient activation of servers.
Similarly, some research [48], [225]-[227] also utilized game
theory to analyze and solve the resource scheduling problem
in edge computing. Besides, some solutions combine game
theory with other techniques. For example, Meng et al. [228]
proposed a game-theoretic based resource allocation mecha-
nism to optimally allocate resources for each component task
of a mobile application. They combined the mechanism with
a reverse-auction based allocation mechanism and a Partial
Critical Path (PCP) strategy. Zhan et al. in [229] proposed a
computation offloading game framework that does not need
information of network bandwidth and preference. To obtain
the optimal offloading decision for a maximal utility in terms
of processing time and energy consumption, an MDP and a
policy gradient based deep reinforcement learning (DRL) are
utilized to solve the problem. Zhang [230] proposed a coali-
tional game-based method to analyze the data offloading from
MDs to MEC servers, aiming to improve bandwidth efficiency
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and user latency, and gain the payoff of MEC servers. To stim-
ulate the offloading, the authors utilized a pricing mechanism
to combined with the coalitional game-based method.

Summary: The basic idea of a game theory-based distributed
method is to regard each user in the game as a player. The
best response decision is made through a collaborative or
non-collaborative manner among players to gain their best
interests. All those game theory-based methods need to prove
the existence of Nash Equilibrium, where a mutually satisfac-
tory solution among users is obtained, and no user is willing
to change its decision unilaterally. Generally, the game theory-
based method has the following advantages: a) simple, flexible,
and easy to implement; and b) practical and rational for the
participants. However, it also has the following disadvantages:
a) the mutually satisfactory solution may not be the global
optimal solution; and b) continuous iteration to achieve the
Nash Equilibrium.

2) Matching Theory: The matching theory is a sub-field
of economics, which is a promising concept in distributed
resource management and scheduling. Besides, the match-
ing theory provides distributed self-organizing solutions to
resource scheduling problems with low complexity. In match-
ing theory-based resource scheduling, each agent (such as an
EN, a radio resource, or a transmitter node) sorts the others
and allocates resources using a preference relation. Generally,
a match is defined as: for a given graph G = (V,E), a
match of the graph M is a sub-graph of G that consists of a
portion of vertexes and edges of the original graph G. And
there are no common vertex and no adjacent edge in the sub-
graph. A vertex has at most one edge in a matching graph,
and if a vertex has one edge, this vertex is called a matched
vertex. Gu et al. [73] studied the problem of how to effi-
ciently assign computing tasks to reduce energy consumption
in the edge computing system under the constraints of the
computing capacity of both MDs and ENs, wireless chan-
nel conditions, and delay. In this regard, this paper utilized a
one-to-many matching theory for modeling and analysis, and
proposed a heuristic swap-matching based algorithm to solve
the task assignment problem. Pham ez al. [231] proposed two
matching algorithms to solve the computation offloading deci-
sion problem and joint resource allocation problem, aiming to
minimize the system-wide computation overhead. Similarly,
the study in [44], [108], [149], [232] also utilized matching
theory-based methods to solve resource scheduling problems
in edge computing.

Summary: Matching theory is a strong tool for analyzing the
mutually and dynamic beneficial relations between users and
SPs [241], [242]. Generally, the matching theory-based method
has the following advantages: a) effective in high dynamic
networks; and b) extendable, decentralized, and practical for
some complex networks. However, since it is generally used
to solve binary offloading problems, it is not very appropriate
in solving partial offloading problems.

3) Auction: Auction is inherited from economics and is
widely used for resource management and scheduling prob-
lems. In an auction mechanism framework for resource
scheduling, the entities with tasks to be processed act as bid-
ders, and the entities providing task processing service act as
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sellers. A trusted entity acts as a third auctioneer to admin-
istrate trading and makes online decisions. To understand the
auction concept easily, we take the work in [243] as an exam-
ple. IoT devices first published their computation tasks and
the corresponding rewards to the edge computing system.
Then, the MDs providing computing services analyzed the
rewards they can obtain through computing tasks and sub-
mitted their bids to the system. Finally, the system assigns the
task to the MD who submitted the highest bids. The auction-
based resource scheduling technique can provide a polynomial
complexity solution, which has been verified to achieve near-
optimal performance. He et al. in [233] considered regarding
the resourceful MDs as collaborative nodes to process tasks
offloaded from end-devices. And an online auction-based
incentive mechanism is proposed to maximize the long-term
system welfare. Sun ef al. in [45] investigated joint resource
allocation and network economics in edge computing. They
proposed two double auction schemes with dynamic pricing
in MEC to maximize the number of successful trades, one is
called breakeven-based double auction (BDA), and another is
called dynamic pricing based double auction (DPDA). Li and
Cai in [234] integrated time scheduling, resource allocation,
and task executor selection for collaborative task offloading,
and proposed an online auction mechanism based on primal-
dual optimization framework to maximize the social welfare.
Also, the work in [235] proposed a reverse auction theory-
based method to solve the 0-1 nonlinear integer programming
optimization problem to decide the offloading target channel.
Similarly, the research in [119], [244] also utilized the auction-
based method to solve resource scheduling problem in edge
computing.

Summary: Like the game theory-based method, in an
auction-based resource scheduling framework, both SPs and
users try to maximize their own welfare. Generally, the
matching theory-based method has the following advantages:
a) economic efficiency to achieve a trade-off between requests
and services; and b) practical in real scenarios. However, it
also has the following drawbacks: a) the solution may not be
the global optimal solution; and b) extra third trusted party for
auction management may induce extra overhead.

4) Federated Learning: FL, also known as collaborative
learning, is a machine learning technique that can train
resource scheduling algorithm on multiple distributed edge
devices or servers that do not exchange local data sam-
ples [245]. FL is a distributed machine learning algorithm,
which not only takes the advantages of machine learning in
solving dynamic resource scheduling problems, but also devel-
ops and improves it. In this regard, Ren ef al. in [236] studied
the computation offloading problem for IoT devices in an
energy harvesting scenario. To jointly allocate communica-
tion and computing resources during the offloading process,
DRL agents are deployed in IoT devices to guide them to
make offloading decisions. Meanwhile, to make the DRL-
based algorithm feasible and reduce the transmission overhead
between IoT devices and servers, the FLL method is adopted to
train DRL agents in a distributed manner. Also, to jointly allo-
cate communication, computing, and storage resources in edge
computing, the authors in [135] integrated the DRL method
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and FL method in edge computing and proposed an In-Edge-
Al framework, where the parameters of the training model
are exchanged between end-devices and edge node to better
optimize the resource scheduling model. Besides, Qian et al.
in [237] combined the FL. method with a centralized greedy
algorithm to address the problem of service placement with
privacy-awareness in the edge computing system.

Summary: Compared with the traditional centralized
machine learning algorithm, FL has the following advantages:
a) since the training process is carried out on distributed
devices, there is no need to upload local data to the dedi-
cated server for centralized training, which can protect the
user privacy and reduce the data transmission burden of wire-
less channels; b) users only upload the parameters of their own
training models, and the synthesized parameters from multiple
devices are fed back to users, which can effectively reduce
the individual training time. However, it also has the follow-
ing disadvantages: a) involves in multiple devices; and b) is
vulnerable to malicious attacks. The FL method for resource
scheduling in edge computing is a new method, and we look
forward to more works in the future.

5) Blockchain: Blockchain technology, as an emerging
decentralized security system, has attracted more and more
attention due to its unique functions such as decentraliza-
tion, non-tampering, irreversible and traceable, and has been
applied in many applications, such as bitcoin, smart grid,
and IoT [235], [246]. The introduction of blockchain tech-
nology into edge computing can ensure the integrity of
resource transaction data and the SP’s profits. There are several
works considering integrating the blockchain technology into
edge computing [238]-[240], [247]. To manage edge com-
puting resources effectively, the work in [238] introduced
a novel concept of edge computing for mobile blockchain
and presented a prototype for IoT blockchain mining tasks
offloading. Xu et al. in [239] proposed BCD, a blockchain-
based computation offloading method in edge computing. The
proposed method can address the unequal resource distribu-
tion problem and ensure QoS requirements of users with an
offloading strategy that preserves data integrity and balance.
Also, to ensure the integrity of resource transaction data and
SPs’ profits, Xiao et al. in [240] proposed an emerging IoT
architecture, name EdgeABC, where the computation offload-
ing algorithm is implemented on the blockchain in the form
of smart contracts.

Summary: The blockchain-based method has the following
advantages: a) can maintain data security; and b) can maintain
data integrity. However, it also has the following disadvan-
tages: a) has relatively high latency; and b) involves in multiple
devices. The blockchain-based resource scheduling method in
edge computing is also a new method, we expect more future
works dedicated to this direction.

From the above analysis, since centralized methods need
to collect global information from users, it can obtain a bet-
ter optimal solution and incur more overhead than distributed
methods. Differently, distributed methods are more simple,
flexible, easy-implement, and adaptive to a dynamic environ-
ment than centralized methods. We summarize centralized and
distributed methods in Tables VII and VIII, respectively.
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TABLE VII

CONVEX APPROXIMATION (SCA), ALTERNATING DIRECTION METHOD OF MULTIPLIERS (ADMM), NON-DOMINATED SORTING
GENETIC ALGORITHM (NSGA), DEEP Q-NETWORK (DQN), QUALITY OF SERVICE (QOS), QUALITY OF EXPERIENCE (QOE),

LONG SHORT-TERM MEMORY (LSTM), FEDERATED LEARNING (FL)

Tech. | Paper Objective Online Method Advantages Disadvantages
a) Use Lyapunov technique to decompose the formu-
[46] Response time X lated problem to be a convex optimization; b) Pro-
= posed a DPCOEM algorithm to solve the problem.
2 a) Divide the formulated problem into two sub-
g [187] | Cost X problems; b) Propose a trade-off approach to solve | a) Mature and widely
£ it used; a) High complexity;
§~ a) Decompose the problem into sub-problems; b) Use b) Near-optimal b) Po%)r racgcality’
” [40] Energy efficiency X the Dinkelbath algorithm and SCA technique to solve results can be P ¥
qé it easily obtained.
] a) Use McCormick envelopes to transformed the
. . problem into a near-convex one; b) Designed an
[191] | Execution delay X algorithm based on ADMM to achieve near optimal
results.
a) Use a sample averaging approximation algorithm
to solve muti-stage stochastic programs; b) Design
£ [194] | QoS X a fast parallel greedy algorithm to solve application
£ placement.
g a) Prove the formulated problem is NP-hard; b a) Easy to fall into
3 p ) y
= [196] | Service delay X Propose an approximate approach with k-means and a) Simple, flexible a local optimum;
@ hybrid quadratic programming. and easy to implement;| b) The performance
g a) From a simple case to a complicated case; b) Prove b) Easy to design a of the solution
2 [197] | Cost v the formulated problem is NP-hard; c) Propose an | local search algorithm. can not be
g approximation algorithm for local search. guaranteed.
Z a) Prove the formulated problem is NP-hard; Propose
[198] | Revenue 4 a deterministic approximation algorithm to solve it.
j a) Prove the problem is NP-hard; b) design a greedy-
. [161] | Latency X based heuristic algorithm to address it.
g . a) Prove the formulated problem is NP-hard; b)
'g [155] | Service cost X Propose SPAC based on local research. a) Easy to fall into
R a) Prove the formulated problem is NP-hard; Pro- a) Efficient; the local optimal
2 [202] | Latency X pose a scalable heuristic approach based on genetic | b) Obtain the optimal solution;
Z algorithm. solution quickly b) Too many
5 a) Analyze the problem as a double decision-making parameters.
= [205] | Latency X problem; b) Propose an heuristic approach based on
NSGA.
[210] | Performance v a) Eormulate the offloading Problem as an MDP; b)
design a DQN-based offloading policy.
— — - - a) Strong parallel .
&0 a) Divide the original problem into two sub- rocessing capability: a) Require a large
= [211] | QoE v problems; b) Develop a two-side matching scheme P g capa A number of
g b) Strong distributed .
3 and a DQN approach to schedule requests. storage and learnin parameters;
o a) Propose a DQN algorithm to solve the offloading cga abilities: e b) A black-box
= [212] Performance roblem; b) use LSTM network layer and candidate pabrlities; rocess;
E= P Y p
S . . 3) Approximate the .
3 network to improve DQN algorithm. . c) Long learning
s - - complex nonlinear :
i a) Prove the formulated problem is NP-hard; b) . . time.
[213] | Utility P relationship
Design an offloading method based on DQN and FL. :

C. Performance Indicators

1) Latency: From the objectives designed in current
research (Table IV-Table VIII), we find that latency is a
key performance indicator that affects users’ QoE. For delay-
sensitive applications, designing a resource scheduling algo-
rithm to reduce latency is one of the main focuses. Since the
computing, communication, and storage resources in the edge
system are limited, if multiple delay-sensitive task requests
are sent to the edge simultaneously, not only the latency
requirements should be considered but also the constraints of
resource capacity and energy consumption should be weighed,
which would form a complex optimization problem. Generally,
the latency of a task in resource scheduling consists of: a)
local computing time; b) transmission time for task offloading;
¢) processing time at the edge or cloud; and d) transmission
time for result return. The idea of current research is generally

establishing a delay model for specific application scenarios,
and formulating an optimization problem by considering vari-
ous constraints to reduce latency, before solving it by different
algorithms.

2) Energy Consumption: Energy consumption is an impor-
tant performance indicator for users’ QoE in edge com-
puting system, especially for small smart devices. The
energy consumption in the research of resource scheduling
in edge computing mainly consists of: a) the energy con-
sumption for local computing; b) the energy consumption
for offloading; c) the energy consumption for processing
tasks at the edge or cloud; and d) the energy consump-
tion for transmitting result back. Many works just aim
to reduce energy consumption [201], [248], [249] while
some works aim to reduce latency and energy consump-
tion simultaneously [51], [107], [112], [131], [250]. Besides,
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COMPARISON OF PAPERS USING DISTRIBUTED METHODS. ACRONYMS USED IN THIS TABLE: MARKOV DECISION PROCESS (MDP), DEEP
REINFORCEMENT LEARNING (DRL), NON-DOMINATED SORTING GENETIC ALGORITHM (NSGA), VEHICULAR EDGE COMPUTING (VEC),

TABLE VIII

MOBILE DEVICE (MD), EDGE NODE (EN), FEDERATED LEARNING (FL)
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Tech.

Paper

Objective

Online

Method

Advantages

Disadvantages

Game Theory

[222]

Cost

a) The formulated problem is decoupled into re-
source allocation and offloading decision-making
problems; b) The offloading decisions are obtained
via potential game; c) The resource allocation is
achieved by using the Lagrange multiplier.

[223]

Revenue, cost

Depending on the edge node’s knowledge of the
network information, developed the uniform and
differentiated pricing algorithms.

[224]

Energy efficiency

A distributed learning algorithm to solve server mode
selection problem

[229]

Utility

a) Formulate the problem as a partially observable
MDP; b) Solve it by a policy gradient DRL based
approach.

a) Simple, flexible
and easy to
implement;

b) Practical and
rational strategy
for the
participants.

a) The mutually
satisfactory
solution may
not the global
optimal solution;
b) Continuous
iteration to
achieve the
Nash Equilibrium.

Matching Theory

[231]

Overhead

a) Users make the offloading decisions; b) Approxi-
mate the inter-cell interference and find the transmit
power of offloading users using a bisection method.

[232]

Delay

a) Formulate the task assignment problem in VEC
as a matching game; b) Propose two methods, one
is one-to-many matching method and another is a
heuristic swap-matching method.

[44]

Throughput

Propose a learning-based channel selection frame-
work by leveraging the combined power of machine
learning, Lyapunov optimization, and matching the-
ory.

a) Effective in
high dynamic
networks;

b) Extendable,
decentralized, and
practical solutions
for some complex
networks.

a) Generally used
to solve binary
offloading
problem;

b) Ineffective in
solving partial
offloading
problem.

Auction

[233]

Welfare

a) Propose a VCG-based offline optimal auction
Mechanism; b) Propose a Myerson Theorem-based
allocation rule of online truthful auction.

[45]

Successful trades

a) Propose a breakeven-based double auction (BDA);
b) Propose a more efficient dynamic pricing based
double auction (DPDA).

[234]

Welfare

a) Proposed a primal-dual framework based online
auction. b) Schedule transmission and computing
times, and optimally allocate communication and
computing resources;

[235]

Energy consump-
tion

a) Determine the MD user classification and prior-
ity; b) Proposed a reverse auction-based offloading
algorithm.

a) Economic
efficiency to
achieve a trade-off
between requests
and services;

b) Practical in
real scenarios.

a) The solution

may not be the

global optimal
solution;

b) Extra overhead
will be induced
since a third
trusted party
is needed.

Federated Learning

[236]

Utility

a) Multiple DRL agents are deployed on multiple
ENs to indicate the decisions of the IoT devices;
b) FL is used to train DRL agents in a distributed
fashion.

[135]

Utility

a) Integrate the DRL and FL methods with edge
computing system; b) Exchange the training model
parameters among end-devices and servers in a col-
laborative way.

[237]

Privacy, service

demands

a) Model the problem of whether service is placed
on edge node or not as a 0-1 problem; b)Propose a
hybrid algorithm combining a distributed FL. method
and a centralized greedy algorithm.

a) Privacy-
protected;

b) Reduce the
burden of
wireless channel;
¢) Low overhead
of learning.

a) Involve in
multiple devices;
b) Vulnerable to
malicious attacks.

Blockchain

[238]

Profit

a) A prototype of an edge computing system for
mobile blockchain; b) A pricing schemes.

[239]

Latency

a) blockchain-based framework is designed degrade
the data loss possibility; b) NSGA-III is leveraged to
acquire the balanced offloading strategies;

[240]

Profit

a) subtask-virtual machine mapping strategy; b) stack
cache supplement mechanism;

a) Maintain data
security;

b) Maintain data
integrity

a) Relatively high
latency;
b) Involve in
multiple devices.

there are also some works considering end-devices have the
function of energy harvesting and wireless charging during the
energy consumption minimization [72], [79], [111], [186].

3) Cost: Research on minimizing the cost of the edge
computing system as a performance indicator is generally a
comprehensive performance indicator established under sat-
isfying user service quality. As described in Section III-A,
when the task is offloaded, its costs include the energy cost
(for transmission and processing tasks), the cost for using

communication channels for transmission, and the cost for
processing tasks at the edge. The current research generally
seeks the best solution by establishing different cost models
with the objective of minimizing the cost [71], [214], [251].
4) Utility: The concept of utility in edge computing refers
to the satisfaction users obtain under a certain resource
scheduling scheme. And the utility is generally represented by
the utility function. According to different objectives, the util-
ity function is represented and mathematically transformed by
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Fig. 9. Various application scenarios under edge computing architecture.

different service quality parameters, such as data transmission
rate, delay, energy consumption, and cost. The mathemati-
cal transformation mainly includes reciprocal, logarithm, and
weighted summation. Finally, effective optimization algo-
rithms are designed to maximize the utility [91], [108], [249],
[252], [253].

5) Profit: The profit is generally measured from the per-
spective of edge SPs when deploying, allocating, and schedul-
ing edge resources for users. The obtained profit is calculated
by subtracting the SPs’ operating costs from users’ payment.
Under the condition of satisfying the users’ QoS, a profit
maximization problem is generally developed before some
marvelous solutions (such as game theory, matching theory,
and auction) is proposed [145], [254]. Similarly to profit
maximization problem, some works also aim to maximize the
welfare of society in edge computing system [233]-[235].

6) Resource Utilization: Resource utilization is also mea-
sured by edge resource providers. Since the resources in edge
are limited compared to that in cloud, the utilization of edge
resources becomes particularly important with the increasing
users. A proper resource scheduling strategy can make full
advantage of edge resources and meet users’ requirements
simultaneously. Existing works typically aim to maximize
resource utilization, which is defined as the ratio of the
resource usage volume to the total resource volume [217],
[255]-[257].

V. RESOURCE SCHEDULING IN APPLICATIONS CONTEXT

New applications are the main driving force for edge
computing. Edge computing involves optimal resource
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Thing

Smart city

Smart health

scheduling in many application scenarios due to users’
stringent requirements for latency, energy consumption, cost,
privacy, etc. In this section, we introduce several typical
application scenarios involved in the research on resource
scheduling in edge computing. When we were analyzing
references, we recorded the applications involved in each
paper. Through statistics, we have summarized several more
researched and more common applications, which serve as
the typical applications of this survey, including UAV, CAYV,
video service, smart city, smart health, smart manufacturing,
and smart home, as shown in Fig. 9.

A. UAV

UAVs, especially low-cost quad-rotor aircraft, are experi-
encing explosive growth and have been widely used in civil
and military fields, such as traffic monitoring, public safety,
disaster detection, search, and rescue. And the research on
resource scheduling in the field of UAVs can be divided into
two directions:

1) UAVs as Users: In some computing-intensive applica-
tions, the UAVs are unable to meet the task requirements due
to the limited resources. In this case, the resources at the edge
of the wireless network, such as cellular BSs, can provide
cloud-like computing services to assist UAVs to complete the
task processing [258], [259]. Cao et al. in [258] studied how
to offload the latency-sensitive tasks of UAVs to the ground
BSs, subject to the speed constraint of UAVs. Similarly, the
authors in [259] studied the offloading problem based on two-
tier UAVs, aiming to minimize the latency of tasks and the
system cost.

Authorized licensed use limited to: SOUTHWEST JIAOTONG UNIVERSITY. Downloaded on November 22,2021 at 02:40:41 UTC from IEEE Xplore. Restrictions apply.



LUO et al.: RESOURCE SCHEDULING IN EDGE COMPUTING: A SURVEY

2153

TABLE IX
COMPARISON OF PAPERS FOCUSING ON UAVS. ACRONYMS USED IN THIS TABLE: EDGE SERVER (ES),
BASE STATION (BS), UNMANNED ARERIAL VEHICLE (UAV), MOBILE USER (MU)

Paper Research issue Edge What’s to be scheduled Key points
Minimize the response time; Optimizing
. . the trajectory of UAVs; the constraints: the
[258] Computation offloading BSs Tasks from UAVs speed of UAVS and the computation capac-
ity of BSs
[259] Computation offloading BSs Tasks from MUs Ig\/;;rilemlze latency and “cost; - Stackelberg
[260] Joint dep]oyment and UAVs Tasks from MUs Minimize system energy consumption; a
task scheduling two-layer optimization method
Joint Computation of- Maximize computation efficiency; the con-
[261] floading and trajectory UAVs Tasks from MUs straints: user association, computing and
scheduling spectrum resources; non-convex problem
[107] Joint task offloading UAVs and ESs Tasks from MUs Max1mlz§ serv'lce delay; maximize the en-
and resource placement ergy efficiency; non-convex problem
Joint UAV  deployment Maximize task delay and energy consump-
[250] and computation of- UAVs and ESs Tasks from MUs tion Y gy P
floading

2) UAVs as Edge Resources: Due to the convenient mobil-
ity, UAVs can be regarded as mobile edge resources or coop-
erate with traditional edge servers on the ground to improve
their connectivity, which can provide high-quality services for
users [107], [250], [260]-[263]. In [260], multiple UAVs are
regarded as flying edge nodes for MUs. The authors presented
ToDeTaS, a two-layer optimization method, to jointly solve the
deployment and task scheduling problem, aiming to minimize
the system energy consumption. Likely, Zhang et al. in [261]
formulated a computation efficiency maximization problem in
a UAV-assisted MEC system. Yu et al. in [107] proposed a
UAV-enabled MEC system to provide the computing service
to the IoT devices, which cannot access any service due to
the sparse distribution of the existing ENs. They studied the
resource allocation problem to minimize the service delay of
IoT devices. Similarly, in [250], under the UAV-aided MEC
architecture, the authors studied the task offloading problem
and adopted the agent to conduct an offloading plan based on
the perceived information of users, UAV, and edge nodes.

We summarize the studies on UAVs mentioned above in
Table IX.

B. CAV

With the development of Al, computer vision, depth percep-
tion and sensing technologies, vehicles have gradually evolved
from traditional travel tools into CAVs with intelligent and
interconnected computing systems. According to Intel, 4TB of
raw data would be generated from a CAV in one day, which
poses a great challenge on processing capacity of CAVs to sup-
port various low-latency and computation-intensive applica-
tions. Therefore, the research on computation offloading from
vehicles to edge or cloud has attracted much attention. Also,
considering the enhancement of the computing, communica-
tion, and storage capabilities of vehicles and the widespread
distribution, vehicles can also be regarded as edge resources to
provide users with flexible computing services. Accordingly,
the research on resource scheduling in edge computing under
the CAV environment includes two directions:

1) Vehicle as Users: In this case, the focus is to sched-
ule the tasks generated by vehicles to the edge (e.g.,
RSU) [90], [208], [249], [253], [264]-[268]. Li et al. in [253]
considered the vehicular edge computing framework where
the computation tasks of autonomous vehicles can be sched-
uled to RSUs. They investigated the task offloading problem
based on the time-varying channel characteristics to maximize
the system utility. Likely, by offloading vehicles’ tasks to
RSUs, the work in [264] took load balancing into account and
used FiWi technology to manage network due to the dynamic
vehicular network. Then, the authors proposed a soft-defined
network (SDN) based offloading scheme aiming to minimize
the task delay. Zhou et al. in [265] studied the energy-efficient
offloading problem and presented a distribution method based
on consensus ADMM. The work in [267] developed a multi-
objective optimization problem for computation offloading in
an IoV edge system to reduce energy consumption and delay
simultaneously. And the authors adopted a non-dominated
sorting genetic algorithm to solve the problem. Moreover, the
work in [268] formulated a computation offloading problem
as a distributed offloading decision-making game, in which
each vehicle as a player makes its best response decision to
minimize its joint cost (including latency and offloading cost).

2) Vehicle as SPs: In this case, vehicles can be the
supplement to the edge, providing computing services for
MUs [36], [269]-[271]. Utilizing the idle resources of parked
vehicles (PVs), the authors in [269] studied how to schedule
the tasks generated by MUs that can be partitioned into sub-
tasks to PVs, aiming to maximize the social welfare. Besides,
Huang et al. in [36] regarded PVs as available edge resources
that can collaborate with the existing edge servers to provide
computing services for MUs. They proposed an interactive
protocol for service provisioning considered the security and
privacy requirements of users. Similarly, in [270], collaborated
with edge servers, PVs are employed to execute tasks of MUs
with delay constraints. The authors proposed a distributed
approach based on the Stackelberg game to solve the task
assignment problem. Particularly, AVE was presented in [271]
as a job scheduling framework, where autonomous vehicles
collaborate to provide computation services for each other.
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TABLE X

COMPARISON OF PAPERS FOCUSING ON CAVS. ACRONYMS USED IN THIS TABLE: ROAD SIDE UNIT (RSU), EDGE SERVER (ES),
UNMANNED ARERIAL VEHICLE (UAV), PARKED VEHICLE (PV), MOBILE USER (MU), SOFT-DEFINED NETWORK (SDN),
ALTERNATING DIRECTION METHOD OF MULTIPLIERS (ADMM)

Paper Research issue Edge What’s to be scheduled Key points
Maximize the system utility; time-varying
[253] Computation offloading RSUs Tasks from vehicles channel; the linearization based branch and
bound algorithm
. . . Minimize the task delay;load balancing;
[264] Computation offloading RSUs Tasks from vehicles SDN-based scheme
Maximize the energy efficiency; a low-
[265] Workload offloading UAVs Tasks from vehicles complexity distributed method based on
ADMM
Multi-objective: reduce energy consumption
[267] Computation offloading RSUs Tasks from vehicles and time delay while keep load balancing;
non-dominated sorting genetic algorithm
Distributed  offloading  decision-making
[268] Computation offloading RSUs Tasks from vehicles game; self-learning based distributed
computation offloading
[269] Taskv offloading and PVs Tasks from MUs ngimize the social welfare; convex opti-
container placement mization methods
Maximize the cost of users; an interactive
[36] Service provisioning PVs and ESs Tasks from MUs protocol; security and privacy constraints;
Stackelberg game approach
[270] Task offloading PVs and ESs Tasks from MUs and Maximize the overall coat; Stackelberg
vehicles game approach
Maximize the system utility; vehicle-to ve-
[271] Task offloading Vehicles Tasks from vehicles hicle communication; ant colony optimiza-
tion

TABLE XI

COMPARISON OF PAPERS FOCUSING ON VIDEO SERVICE. ACRONYMS USED IN THIS TABLE: EDGE SERVER (ES), PARTICLE SWARM OPTIMIZATION
(PSO), AUGMENTED REALITY (AR)

Paper Things Edge What’s to be scheduled Key points
Private clusters Maximize the average query —accuracy;
. Components of computer | trade-off between multiple resources and
[272] ToT Cameras and public . .
visions accuracy; the constraints: large search space
clouds . .
and merging conflicts
[273] Svrnartphones, Container-based Components of videos Mln}mlze response time; inter-edge collab-
security/dash cameras ESs oration
Minimize the energy expenditure and la-
[274] Smartphones ESs Componepts pf a AR tency; ciorr%ponent—b'ased model of an'AR
application application; successive convex approxima-
tion algorithm;
Minimize the failure probability; the relia-
[275] MDs ESs AR Tasks bility and latency requirement; the depen-
dency of sub-tasks; PSO-based algorithm

We summarize the studies on UAVs mentioned above in
Table X.

C. Video Service

The video generated by smart devices has promoted
the development of various applications, such as traf-
fic control, autonomous driving, public surveillance and
security, and AR/VR. Due to the limited storage and
computing capabilities of smart devices, it may be ineffi-
cient to process the computation-intensive and bandwidth-
hungry videos locally. Scheduling video service to the edge
to process is a feasible method to meet the low-latency
requirement.

In [272], VideoEdge was proposed to optimize the place-
ment of computer vision components, where two challenges
were addressed including exponentially large search space
caused by multiple resource providers and merging conflicts.

Yi et al. in [273] presented LAVEA, a video analytics edge
computing platform. They formulated the task selection and
prioritized for offloading as an optimization problem. LAVEA
can provide low-latency computation offloading service based
on serverless architecture. For the AR applications in video
services, Ali et al. in [274] proposed a resource allocation
scheme, which involved both communication and comput-
ing resources. They leveraged the inherently collaborative
nature of AR applications and solved the energy expendi-
ture minimization problem with low-latency constraint by the
successive convex approximation algorithm. Further, Liu and
Zhang in [275] considered the reliability of AR task offloading
problem, where the components of an AR task was modeled
as a directed acyclic graph with dependencies. To minimize
the failure probability of AR service, an integer PSO-based
algorithm was proposed.

We summarize the studies on video services mentioned
above in Table XI.
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D. Smart City

In 2016, Alibaba put forward the concept of “smart city”,
where multiple urban data are used to manage the city better.
To manage and process the smart city data characterized by
diversity and heterogeneity and involved the privacy and secu-
rity of residents, some studies focus on designing edge collab-
orative processing systems [276]-[278]. Also, some works on
the optimal placement of edge resources provide convenient
and fast computing services for emerging applications in smart
cities [150], [202], [257], [279]. For large-scale smart cities,
the authors in [150] presented the logical edge network formed
in a tree topology to place edge service in a resource-effective
way. Based on the logical edge network, they also designed a
service placement scheme meeting the service demands of IoT
devices as well as the resource capacity of edge servers. To
process the quantities of services produced by IoT devices in
smart cities, Xu et al. in [279] proposed TSP as a trust-oriented
IoT service placement scheme to tackle the improvement
of resource usage, load balance and energy consumption
while protecting the privacy of IoT devices. Similarly, to deal
with data streams generated from sensors deployed in smart
cities, Canali and Lancellotti in [202] also studied the ser-
vice problem and proposed a scalable heuristic-based genetic
algorithm.

E. Smart Health

The development of cloud computing, wireless broadband
communication, BAN and wearable medical devices enhances
mobile medical services and improves medical standards and
medical conditions. However, as medical data grows expo-
nentially, the cost of operating and maintaining the medical
system is increasing. To alleviate this situation, deploying
edge resources to process medical data at the edge has
attracted much attention [251], [285], [286]. Moreover, the
establishment of edge-assisted medical systems can save
costs for healthcare service providers [280], [287], [288].
Alam et al. [251] proposed an edge-of-things (EoT) compu-
tation framework for healthcare service provisioning, where
an EoT is a bridge between service providers and health-
care consumers. The authors proposed a portfolio optimization
approach for cost-effective service provisioning and used an
ADMM method for healthcare data offloading. The secu-
rity and privacy of healthcare data in smart health is very
important. In [280], a security provisioning model named
AZSPM, was proposed for medical devices in edge comput-
ing. AZSPM can build trust among medical devices with zero
knowledge. For the wearable smart devices for physical mon-
itoring, the work in [286] proposed an edge computing-based
deep learning network system for physical monitoring by using
multimedia technology with agile learning for real-time data
processing, which improved the multiple performance metrics
effectively.

F. Smart Manufacturing

Smart manufacturing refers to the realization of intelligent
industrial operations through Al and big data technology. In
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smart manufacturing, the industrial devices need real-time con-
trol based on the generated data characterized with security
and privacy. And the introduction of Al technology into the
IIoT requires powerful computing capabilities to complete
advanced fault prediction, demand forecasting and other big
data processing tasks. Therefore, applying edge computing
in smart manufacturing has become the direction of indus-
try development, which can improve system performance,
ensure data security and privacy, and reduce the cost of oper-
ation [281], [282], [289], [290]. Chen et al. [289] presented
an edge computing architecture for IoT-based manufacturing,
where edge computing acted as edge equipment, information
fusion, network communication and cooperative mechanism
with traditional computing. Job shop scheduling (JSP) prob-
lems are complex in smart manufacturing. In [281], Lin et al.
proposed an edge computing framework for smart manufac-
turing, which adjusted DQN to solve JSP problems. The work
in [282] designed an Al-enhanced offloading framework that
combined the edge and cloud computing to maximize the
service accuracy in IloT. The authors introduced edge intelli-
gence to smart manufacturing for the sake of many advantages
it can bring, including personalization, responsiveness and
privacy.

G. Smart Home

The development and enrichment of smart devices have
made the system of smart homes reaches commercial matu-
rity. Smart homes use lots of IoT devices (such as various
sensors) to control and monitor the living environment in real-
time. However, the ever-increasing number of smart devices,
the multiple applications with low latency requirements, the
big data generated by smart devices, and the extremely pri-
vate home data, make it a tread to apply edge computing
instead of cloud computing to smart homes. There are many
works focusing on edge resource scheduling towards the
smart home environment [218], [283], [291]. EdgeOSH, a
home operating system, was proposed in [291] to provide
functions of the program interface and data management.
In [283], HomePad was presented for home environments,
and it allows IoT applications to execute at the edge. For
users’ privacy, HomePad was designed to enable users to
determine how applications access and process sensitive data
generated by smart devices. Besides, Wang er al. in [284]
studied the resource management of the healthcare system in
smart homes under the edge-cloud architecture, and presented
a task scheduling scheme named HealthEdge, which can pro-
cess different tasks based on priorities aiming to reduce the
latency.

The studies on smart city, smart health, smart manufactur-
ing and smart home are called the study on smart “things”
in our survey. And we summarize the studies on smart
“things” mentioned above in Table XII. Notably, the appli-
cation scenarios for smart “things” are deeply dependent on
the development of IoT. We believe that the research on
each application scenario will become more and more mature
thanks to the explosive growth of edge computing in the field
of IoT.
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TABLE XII

(ADMM), DEEP Q-LEARNING (DQN), JOB SHOP SCHEDULING (JSP)

Paper Domain Research issue What’s to be scheduled Key points
[150] Smart city Service placement Edge services Maximize the resource utilization; logical
edge network
Optimize multiple performance metrics; the
[279] Smart city Service placement IoT services constraints: time and privacy; the strength
Pareto evolutionary algorithm
. . . s Healthcare service and Maximize the cost of healthcare system; a
[251] Smart health Service provisioning data portfolio optimization approach; ADMM
[280] Smart health Service provisioning Healthcare service A r'emote verllﬁf:atl.on method; dynamic se-
curity composition; zero knowledge
[281] Smart manufacturing ISP Jobs gener'ated by Maxnnl;e the job latency; DQN; job shop
machine scheduling
. . - . Tasks generated by IoT Maximize the service accuracy; Al-
[282] Smart manufacturing Offloading devices enhanced offloading framework
' Data generated by smart Protect the Prlvacy of user.s; a d1rec§ed grel.gh
[283] Smart home Data analysis . of elements; prolog rules; automatic verifi-
home devices cation
[284] Smart home Task offloading Tasks generated by the Minimize the task latepcy; he_alth emer-
healthcare system gency and human behavior consideration

VI. CHALLENGES AND RESEARCH DIRECTIONS

Despite the fact that the research on resource scheduling in
edge computing has accumulated a lot of results, there are still
many key issues that have not been well explored. This section
discusses several open research challenges followed by future
research directions.

A. Model and Architecture

1) Computation and Communication Model: To efficiently
schedule edge resources to accomplish task processing, a
computation model should be first established to reflect the
relationship between task data size and the amount of com-
puting capacity it requires. In most existing works, it always
utilizes a processing density (in CPU cycles/bit) to denote this
kind of relationship; thus that the amount of computing capac-
ity a task requires is equal to the product of task data size and
processing density [10], [64]. Obviously, it is a linear represen-
tation. However, since different types of tasks have different
processing densities, this kind of one-size-fits-all represen-
tation approach may not be suitable for various application
tasks in edge computing. Therefore, more flexible computa-
tion models are worthy of further study. Besides, to better
process application tasks, utilizing communication resources
to offload part or all of the tasks to ENs is trending. During
this process, the data transmission rate is a key concern for
communication resource scheduling. Current representations
of data transmission rate are mostly based on the Shannon-
Hartley theorem, which tells a theoretical tightest upper bound
on the data transmission rate over a communication channel
of a specified bandwidth in the presence of noise. However,
in the practical scenario of edge computing, end-devices
and ENs are always positioned in a complicated environ-
ment with extremely poor channel conditions, such as high
mobility, shield, and interference [253]. The actual data trans-
mission rate can not achieve the theoretical value. Therefore,

it is necessary to develop a more practical communication
model based on field tests or considering different application
scenarios.

2) Computation Migration: Since task processing always
involves cooperation among multiple ENs or end-devices,
few studies focus on computation migration. Generally, to
accomplish the computation migration, there are mainly six
steps: migration environment sensing, task division, migra-
tion decision, task uploading, task execution, result return.
Among them, task division and migration decision are the
two most critical steps. However, in most existing works
that considered computation migration in resource schedul-
ing, only the migration decision step is considered, and
other steps are ignored [98], [99]. Computation migration
is more like a kind of concept of collaborative computing
in current studies. Future research can focus more on the
implement of computation migration considering the entire
process.

3) Task Partitioning and Integration: Computation offload-
ing has attracted much attention in resource scheduling in
edge computing. A task can be divided into two parts, one
part computed locally and the other part offloaded to ENs or
other nodes for processing. It is assumed that the offloaded
part of a task is denoted by an offloaded ratio in most exist-
ing works [107], [108]. The resource scheduling process is to
determine an optimal offloaded ratio and other optimization
variables. Once the optimal offloaded ratio is obtained, this
part of the task is directly offloaded [17]. However, for a cer-
tain task, the divisible part may not be equal to the optimal
offloaded part based on the optimization solution. Therefore,
future research should step further on exploring the nature
of tasks during task partitioning for computation offloading.
After the task is partitioned and processed by different nodes,
it is necessary to integrate the dispersal results. Another con-
cern may arise during this process: whether the integrated
results are the same as those of none-partitioning process-
ing? This concern leads to a future study on how to integrate
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the processing results from different nodes without losing the
original information of the task.

4) Green Energy: To achieve energy saving and main-
tain longer battery life of IoT devices, it is a trend to
utilize renewable green resources light and wind to strengthen
energy support, which can significantly reduce carbon emis-
sions and environmental pollution. There are many studies on
energy-harvesting or wireless-charging enabled edge comput-
ing [79], [111]. The introduction of extra energy supplement
makes resource scheduling more complex since not only the
energy consumption model during task transmission and task
processing should be considered, but also the harvested energy.
Although marvelous solutions are proposed in existing works,
most of them consider the extra energy can be harvested
continuously [72], [186]. However, in practice, the energy
harvesting process may be unstable, which poses a signifi-
cant challenge in designing an efficient resource scheduling
strategy. Therefore, future research should focus more on the
energy harvesting process.

5) Heterogeneous Architecture: The architecture of edge
computing generally includes things layer, edge layer, and
cloud layer. Most of the existing research on resource schedul-
ing are under the thing-edge-cloud architecture. It is predicted
that the integration of multidimensional networks such as
space, air, and ground to form the space-air-ground inte-
grated network (SAGIN) is the future trend to support the
ever-increasing [oT applications [292]. Under such a space-air-
ground heterogeneous architecture, the SAGIN incorporated
with edge computing can provide a myriad of services and
applications, such as edge caching, computation offloading
and cloud services [293]. However, heterogeneous nodes
( end-devices, edge servers, CAVs, UAVs, and satellites)
and the heterogeneous resources of those nodes make the
resource management and scheduling complicated. Besides,
heterogeneous nodes are subject to strong spatio-temporal con-
straints [294], which make the management and scheduling
of heterogeneous resources more challenging. Therefore, it is
necessary to develop an efficient resource scheduling and man-
agement technology that can simultaneously orchestrate the
heterogeneous nodes and resources in SAGIN. In this context,
network slicing is a viable technique for efficient heteroge-
neous resource scheduling and management [295], [296].

B. Feasibility

1) Deployment: There are relatively few studies on the
deployment of ENs, including edge servers or IoT devices
in resource scheduling. The geographical location of ENs has
a great impact on resource scheduling. Enlarging the service
range of ENs can effectively improve edge resource utiliza-
tion and effectively improve resource scheduling utility [30].
In many cases, the users are mobile, and ENs’ deployment
will be more complex. Therefore, future research can consider
the deployment of ENs when designing resource scheduling
mechanisms.

2) Management: For the edge, scheduling computation
tasks of users at the infrastructure is mostly limited to theo-
retical research. The technical issues on the implementation
have not been well explored. Besides, the scalability of
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resource scheduling algorithms should be taken seriously. With
the rapid expansion of users’ scale, the resource schedul-
ing scheme is required to achieve flexible deployment and
rapid configuration [32]. Serverless computing has become
a popular architectural alternative for building and running
up-to-date applications and services [152]. Serverless appli-
cations allow developers to focus on the code rather than
on infrastructure configuration and management, which can
speed up service provisioning and provide more efficient scal-
ing [297]. The serverless computing architecture realizes the
automatic scalability of services, pay-by-value, and automated
high-availability management, which provides a powerful and
convenience orchestration framework to schedule and man-
age edge resources. However, research on applying serverless
architectures to edge computing is in its infancy, and many
problems remain unsolved. Therefore, more attention need to
be paid to resource scheduling research based on the serverless
edge architecture.

C. Security and Privacy

1) System-Level: 1In the existing resource scheduling
research, security and privacy issues have not been appreci-
ated and fully explored. In resource scheduling, the multi-layer
architecture of edge computing makes the edge system vul-
nerable to hostile attacks [182]. A system failure of an edge
node or a failure caused by attacks may threaten the relia-
bility and robustness of the entire edge system, thus making
the resource scheduling meaningless. Therefore, efforts are
required to put into the fault tolerance research of edge
systems in resource scheduling. Specifically, system robust-
ness enhancement mechanism and intrusion detection strategy
need to be developed.

2) Service-Level: In the existing research on computation
offloading and service provisioning, the following issues are
generally not considered: whether the offloaded edge node can
be trusted, how to ensure that users can authorize the edge
services, and how to protect the privacy of the data generated
by the edge service. Therefore, designing authentication mech-
anisms for the users covered by a specific edge node is needed.
Besides, the privacy module is also required for the edge data
center to improve the trustworthiness of edge services.

3) Data-Level: In the process of resource scheduling, espe-
cially computation offloading, data collected by the edge or
shared with IoT devices involve much private information.
In the existing research, the user data, the interaction data
between ENs, and the computing data at the edge are uncon-
ditionally trusted and easily accessible [29]. However, in real
application scenarios such as smart home and smart health,
these data involves privacy and even commercial secrets of
users, and can be easily leaked during transmission and pro-
cessing, causing huge losses [31], [298]. Therefore, more
works are needed to focus on designing trust mechanisms and
privacy preservation policies for the edge and users.

D. Dynamics

In resource scheduling, users’ mobility is a thorny
challenge. In various application scenarios, users’ mobile
characteristics have not been well explored in current research,
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and most studies just conduct idealization and ignore this char-
acteristic. The frequent mobility of users has a significant
impact on task offloading and cache provisioning. The offload-
ing decision and cache decision at the current moment may
not be applicable to users at the next moment, or even users
have moved out of the service range of the edge node [10].
Therefore, incorporating the trajectory prediction of users into
resource scheduling studies can effectively improve the users’
QoS. Moreover, designing the mobility management policies
to enable users to access ENs seamlessly can improve the
service stability.

E. Joint Scheduling of Communication, Computing, Storage
(CCS) Resources

Task data should be received by processing nodes and
cached in the data queue, waiting for processing to accom-
plish the offloaded tasks. The caching and queuing process
is complicated and also very important for real-time task
processing. However, in most existing works, the total task
processing time is considered as the sum of local processing
time, transmission time, and offloading processing time, ignor-
ing the caching and queuing process. Besides, most studies
on scheduling cache resources focus more on caching popular
content at the network edge to improve hit ratio and avoid
duplicate transmissions of the same content, thus improving
users’ QoE [25], [299]. A few works have been done to con-
sidered combining the joint allocation of communication and
computing resources. Therefore, future work on joint schedul-
ing of CCS resources should take the research further forward
by considering the caching and queuing process.

FE. Evaluation

1) Workload: The workload of users’ requests has a non-
negligible impact on resource scheduling. The requests from
users are generally assumed to obey a specific distribu-
tion (e.g., Poisson distribution) in the current evaluation.
Furthermore, the scheduled task’s CPU, memory, and storage
requirements are treated theoretically and idealistically with-
out considering real system performance. However, in the real
environment, the peak situation of workload may put abnor-
mal pressure on edge resources and even cause users’ tasks
to fail [29]. Therefore, resource provisioning based on work-
load prediction is an urgent problem for SPs. Also, for reliable
service, a good load balancing strategy needs to be designed.

2) Test Environment: The performance evaluation of
scheduling algorithms in current research is generally
performed using simulation tools, including professional
simulators for edge computing such as iFogSim [300],
EdgeCloudSim [301], and MyiFogSim [302], and general sim-
ulation platforms like MATLAB. Few studies evaluate their
algorithms in real edge systems. Effort is required to focus on
the feasibility of scheduling algorithms in real systems, e.g.,
designing testbeds or prototypes for evaluation.

VII. CONCLUSION

In this survey, we conduct a systematic and comprehen-
sive review of resource scheduling in edge computing. First,
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we lay the groundwork for the entire overview by elaborating
on two fundamental questions of why resource scheduling is
needed and what exactly resource scheduling refers to in edge
computing. Second, we present the architecture and different
collaborative manners for resource scheduling. Third, an in-
depth overview of research issues and research techniques in
resource scheduling is presented, which is the prominent effort
of this survey. Regarding the key research issues, we first intro-
duce a unified offloading model for edge computing. Then
we summarize the current works from three research aspects
including computation offloading, resource allocation, and
resource provisioning. Regarding the key techniques, based
on two operation modes, namely, centralized and distributed
modes, the state-of-art works are investigated and explicitly
categorized. Also, we summarize six performance indicators
that frequently appear in the surveyed literature. Fourth, some
typical application scenarios involved in resource scheduling
are introduced. Finally, for resource scheduling in edge com-
puting to be investigated extensively and deeply, we shed light
on the current research bottlenecks and challenges and look
forward to more research investment in promising research
directions.
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