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Abstract— With the fast development of Internet of Vehicles
(IoV), various types of computation-intensive vehicular applica-
tions pose significant challenges to resource-constrained vehicles.
The emerging Vehicular Edge Computing (VEC) and Edge
Intelligence (EI) can alleviate this situation by offloading the
computation tasks of vehicles to the roadside edge servers.
However, with many vehicles contending for the communication
and computation resources at the same time, how to quickly
and efficiently make an optimal computation offloading decision
for individual vehicles represents a fundamental research issue.
In this paper, we propose a self-learning based distributed
computation offloading scheme for IoV. Note that without any
centralized controller, a fully distributed algorithm is necessary.
The proposed scheme is devised based on a game-theoretic
model. Specifically, through establishing an offloading framework
with communication and computation for IoV, the computation
offloading problem is first formulated as a distributed offloading
decision-making game, in which each vehicle as a player makes
its best response decision to minimize its joint cost (including
latency and offloading cost). The existence of Nash Equilib-
rium can be proved. We then propose a self-learning based
distributed computation offloading (DISCO) algorithm to reach
the Nash Equilibrium, where a mutually satisfactory solution
among vehicles is obtained and no vehicle is willing to change
its decision. Using extensive simulations, we verify that DISCO
can outperform the counterparts and achieve at least an order-of-
magnitude improvement on time overhead and 88% performance
gain on message overhead, only at up to 12% performance loss
on joint cost over the centralized scheme.
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I. INTRODUCTION

THE Internet of Vehicles (IoV) has recently attracted
increasing interests from both academic and industry

[1]–[3]. By integrating the advanced computation and com-
munication in one platform, IoV can support various types
of vehicular applications, such as autonomous driving, precise
fleet management, and real-time video analytics [4], [5], and
plays a crucial role toward the next-generation intelligent
transportation system [6].

The powerful and resource-hungry applications of IoV, how-
ever, require intensive real-time computation, which poses sig-
nificant challenges on resource-constrained IoV [7]. To address
the issue, the paradigm of Vehicular Edge Computing (VEC)
has been proposed [8]. In VEC, the IoV can offload the
computation-intensive tasks to roadside units (RSUs) that are
equipped with edge servers [9] which deploys and trains
powerful machine learning models, i.e., Edge Intelligence (EI),
to help data processing for driving through IoV [10]–[12].
However, note that each connected IoV to VEC may present
random demand and different urgencies of tasks, how to make
proper offloading decisions for IoV by jointly considering
radio and computing resources deserves investigation.

Several previous efforts have focused on the computation
offloading [9], [13]–[18]. In these works, the computation
offloading is mostly formulated as a resource allocation
problem through either minimizing the total latency or cost
or maximizing the system utility. Marvelous solutions are
proposed to solve these optimization problems. They often
adopted centralized optimization methods by collecting com-
plete information from vehicles, which requires frequent state
information updating to optimize the system performance and
results in a high system overhead [19]. Even so, global optimal
solutions generally cannot be obtained due to the complexity
of the centralized optimization problems, instead, some kind
of heuristic solutions are obtained. Moreover, some vehicles
may be unwilling to send their information due to privacy
concerns and hence are unwilling to participate in centralized
optimization. Accordingly, it is imperative for vehicles to self-
learn the best offloading decisions for their own profits in a
distributed manner.

Motivated by the aforementioned discussion, we aim to pro-
pose and design a distributed computation offloading scheme
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for IoV, where each vehicle can make an offloading decision
independently. To this end, in this paper, we propose a self-
learning based distributed computation offloading scheme for
IoV. Specifically, we first establish an offloading framework
with communication and computation for IoV, in which each
IoV tries to obtain its best computation offloading decision
in pursuit of a minimum joint cost. Then, we formulate the
computation offloading problem as a distributed offloading
decision-making game, which can analyze the intersections
among multiple IoVs that act in their own interests. By utiliz-
ing the concept of best response [20] and potential game [21],
we prove the existence of Nash Equilibrium [22] of our
formulated game. To reach the Nash Equilibrium, we pro-
pose a self-learning based distributed computation offloading
(DISCO) algorithm. With DISCO, each IoV can learn the best
response decision automatically and independently towards
an equilibrium state, where no IoV is willing to unilaterally
change its offloading decision. The contributions of this paper
can be summarized as follows.

1) Model: We establish an offloading framework with both
communication and computation for IoV. Under the
framework, we formulate the computation offloading
problem as a distributed offloading decision-making
game to analyze the intersections among multiple IoV,
where each IoV acts in its own interest.

2) Algorithm: After we prove the existence of Nash Equi-
librium of the game, we propose a self-learning based
distributed computation offloading (DISCO) algorithm,
where each IoV learns from its individual information
and the decision profile of other vehicles to make its best
response decision. No control center is required, DISCO
is a very practical algorithm.

3) Validation: We use real-world vehicular traces to con-
duct extensive simulations, which demonstrates the
effectiveness of our proposed DISCO over counterparts.
How different variables (such as task data size, num-
ber of vehicles, communication resource, weightings of
latency and cost) impact the system performance is also
presented by simulation results.

The remainder of this paper is organized as follows. The
related work is presented in Section II. In Section III, we depict
the offloading framework with communication and compu-
tation for IoV. The game formulation and the existence of
Nash Equilibrium are introduced in Section IV. The proposed
DISCO algorithm is presented in Section V. In Section VI,
extensive simulation results are discussed. The conclusion is
drawn in Section VII.

II. RELATED WORK

In this section, we survey the existing literature on compu-
tation offloading for IoV both in centralized and decentralized
manners.

There are some works studying computation offloading. The
authors in [14] propose a dual-side dynamic joint task offload-
ing and resource allocation algorithm in vehicular networks
(DDORV), which utilizes Lyapunov optimization theory to
minimize the averaged cost of mobile edge computing (MEC)

enabled roadside unites and vehicular terminal. Through
derivation and comparing the values of local processing cost
and task offloading cost, the optimization problem on the
vehicular terminal side is solved. For the optimization issue on
the MEC server side, the Lagrangian dual decomposition and
continuous relaxation method are adopted. The authors in [9]
propose a cloud-based MEC offloading framework in vehicular
networks, where both the heterogeneous requirements of the
mobility of the vehicles and the computation tasks are consid-
ered. Based on the analysis of the characteristics of various
offloading strategies, the authors further propose a predictive-
mode transmission scheme for task-file uploading. The work
in [23] proposes a Lyapunov-based dynamic offloading deci-
sion algorithm for flexible subtasks by jointly considering
energy consumption and packet drop rate. To address the
overload problem in the edge server, the work in [8] integrates
load balancing and offloading problems in the VEC network.

Most of the existing computation offloading problems are
mixed-integer non-linear programming (MINLP) problems.
They are generally NP-hard and are not computable in polyno-
mial time with existing general solvers. Generally speaking,
the complex optimization problem is decomposed into sub-
problems, and the near-optimal solution is derived by solving
those subproblems respectively [14]. Recently, many works
consider utilizing deep reinforcement learning based methods
to solve the complex computation offloading problem. The
authors in [24] present a reinforcement learning based mobile
offloading scheme for edge computing against jamming attacks
and interference, which uses safe reinforcement learning to
avoid choosing the risky offloading policy that fails to meet
the computational latency requirements of the tasks. The
authors in [25] propose two deep reinforcement learning based
dynamic computation offloading algorithms for mobile edge
computing systems with energy harvesting devices, which
addressed the challenges of continuous-discrete hybrid action
spaces and coordination among devices.

Other works study the computation offloading in a decen-
tralized manner. The literature [16] proposes a hierarchical
cloud-based VEC offloading framework to improve the quality
of offloading service that may be endangered by the compu-
tation limitation of MEC servers. And a Stackelberg game-
based method is adopted to maximize the utilities of both
computing servers and vehicles. Authors in [26] consider
the latency of computation offloading as the computation
overhead of vehicles and try to reduce it through a multi-
user distributed computation offloading algorithm based on
game theory. Authors in [27] and [28] propose a game
theory-based multi-user distributed computation offloading
algorithms for mobile cloud computing and mobile-edge
cloud computing, respectively. The work in [29] proposes a
fully distributed computation offloading (FDCO) algorithm to
address the multi-user computation offloading problem for
cloudlet-based mobile cloud computing in a multi-channel
wireless contention environment. The work in [30] considers
the problem of computation offloading while achieving a
trade-off between execution time and energy consumption
in an unmanned areal vehicle (UAV) network, where the
combination of energy overhead and latency is minimized by
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Fig. 1. Computation offloading in a VEC network.

the designed game theory model. The work in [31] formulate
a distributed computation offloading problem among mobile
users as an exact potential game and propose a distributed
offloading scheme based on Q-learning and better-response.
To improve the task offloading delay performance, authors
in [19] and [32] respectively proposed an adaptive learning
based offloading algorithm and an online learning-based task
replication algorithm based on multi-armed bandit theory. The
authors in [33] propose a contract-based traffic offloading
and resource allocation mechanism for the software-defined
wireless network (SDWN)-cased heterogeneous ultra-dense
networks (HetUDN), where each small-cell base station (SBS)
selects the contract that achieves its own maximum utility.

All these works above are marvelous solutions. However, for
the centralized computation offloading, complete information
of all vehicles should be collected, which results in a high
system overhead. Generally speaking, the global optimal solu-
tion cannot be obtained even with the complete information
because of the complexity of centralized methods. For the
distributed computation offloading, most existing works only
consider a single performance index such as delay or a sim-
ple combination of delay and energy consumption, ignoring
other important performance indexes such as communication
cost and computation cost. In light of the existing works,
considering energy consumption, communication cost and
computation cost as the offloading cost, we formulate the
computation offloading as a distributed game to minimize the
combination of latency and offloading cost and propose a self-
learning based distributed computation offloading (DISCO)
algorithm to reach the Nash Equilibrium, as well as provide
detailed analysis on how different variables impact the system
performance from simulation results.

III. OFFLOADING FRAMEWORK WITH COMMUNICATION

AND COMPUTATION FOR IOV

A. System Description

For convenience, the main notations used are summarized
in Table I. Fig. 1 shows the computation offloading in a
VEC network. The road is divided into segments, and each
covered by a roadside unit (RSU) with a roadside edge
server (RES). We consider an LTE-V network composed of
vehicles and roadside units (RSUs) deployed along the road.
And each vehicle has an LTE-V radio interface to establish

TABLE I

MAJOR NOTATIONS

a communication link with RSU. We consider a coverage
area of one RSU and a set of N = {1, 2, . . . , N} Internet
of Vehicles (hereinafter referred to as vehicle for short).
The RSU can provide powerful computing capacity due to
the deployed RES. Each vehicle has a latency-sensitive and
computation-intensive task to be processed. We use two items
to describe the computation task of vehicle n (n ∈ N ),
i.e., Tn � {Dn, Cn}, where Dn stands for the data size
of Tn, and Cn stands for the processing density (in CPU
cycles/bit) of Tn. Vehicles can establish a communication
link with RSU through the orthogonal licensed vehicle-to-
infrastructure (V2I) channels, each with the bandwidth of B.
The number of licensed channels for V2I communication is
denoted by L. We use an indicator χn to denote the task
offloading decision of vehicle n, where χn = 0 indicates that
task Tn is computed locally by vehicle n, and χn = 1 indicates
that task Tn is offloaded to RSU to be processed through V2I
communication. In the following, we will elaborate on the two
cases, respectively.

B. Task Processed Locally

If vehicle n choose χn = 0, task Tn will be processed
locally by vehicle n. Let f l

n denote the processing capability
(i.e., the amount of CPU frequency in cycles/s) at vehicle n
assigned for local computing, then the power consumption for
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vehicle n to process task Tn locally is expressed as

pl
n = κn(f l

n)3, (1)

where κn is a coefficient related to power in vehicle n [34].
The local execution time of task Tn is then given by

tln =
DnCn

f l
n

. (2)

Accordingly, the energy consumption of vehicle n for local
processing is expressed as

El
n = pl

ntln = κnDnCn(f l
n)2. (3)

C. Task Offloaded to RSU

If vehicle n choose χn = 1, task Tn will be offloaded to
RSU to be processed. Since the processing result is usually
very tiny, we neglect the output return process and just focus
on transmitting data to RSU [14]. There exist two procedures
to accomplish the task computing in RSU, which will be
presented in the following.

1) Task Transmission: For ease of analysis, we consider the
system to be quasi-static so that the wireless channels and the
topology of the system keep unchanged during an offloading
period [27]. Let h denote the channel fading coefficient,
which is modeled as a circularly symmetric complex Gaussian
random variable [35]. When task is transmitted from vehicle
n to RSU on licensed V2I channels, the transmission rate is
given by

rn(χ) =
L∑

n∈N χn
Blog2(1 +

Pn|h|2
ω0(dn)ϑ

), (4)

where Pn is the transmission power of vehicle n, ω0 denotes
the white Gaussian noise power, χ is the decision profile of all
vehicles, denoted by χ = (χ1, χ2, . . . , χN ), dn and ϑ denote
the distance from vehicle n to RSU and the path loss exponent,
respectively. Since we consider all

∑
n∈N χn vehicles share

the L channels, each vehicle can obtain L�
n∈N χn

channels.
It is notable that the powerful RES renders the edge computing
time of offloaded tasks rather small. Therefore, for simplicity,
the vehicle is assumed to stay stationary while performing
edge computing [36]. Accordingly, when transmitting task Tn,
the transmission time is expressed as

ttrn (χ) =
Dn

rn(χ)
, (5)

and the energy consumption is expressed as

Etr
n (χ) = Pnttrn =

PnDn

rn(χ)
. (6)

2) Task Computed by RSU: After task Tn is transmitted
from vehicle n to RSU, it will be computed by the deployed
RES. Let M denote the number of processing cores of the RES
enabled RSU, and the processing capability (i.e., the amount of
CPU frequency in cycles/s) of each core as fe, then the power
consumption of each core to compute task is expressed as

pe = κe(fe)3, (7)

where κe is a coefficient related to power in RSU [34].
Accordingly, the execution time and energy consumption of
RSU for compute task Tn can be expressed as

ten(χ) =
DnCn

M�
n∈N χn

fe
=

DnCn

∑
n∈N χn

Mfe
, (8)

and

Ee
n(χ) =

M∑
n∈N χn

peten(χ) = κeDnCn(fe)2. (9)

Accordingly, the total latency for processing task Tn when
it is offloaded to RSU is expressed as

toff
n (χ) = ttrn (χ) + ten(χ)

=
Dn

rn(χ)
+

DnCn

∑
n∈N χn

Mfe
. (10)

Similarly, the total energy consumption for processing task Tn

when it is offloaded to RSU is expressed as

Eoff (χ) = Etr
n (χ) + Ee

n(χ)

=
PnDn

rn(χ)
+ κeDnCn(fe)2. (11)

D. Joint Cost and Problem Formulation

For a given task Tn, costs for processing this task would be
produced. Just like the cost defined in [27], the execution cost
defined in [29], and the utility function defined in [30], we use
the term joint cost to define the overall cost to process task Tn

as the combination of latency and offloading cost, expressed as

Un(χn, χ−n) = λ1Latency + λ2Cost, (12)

where χ−n = (χ1, . . . , χn−1, χn+1, χN) denotes the task
offloading decisions of other vehicles, λ1 and λ2 denote the
weighting parameters of latency and offloading cost, respec-
tively.1 Specifically, the Cost when χn = 0 only includes the
energy consumption for vehicle n computing task Tn, while
the Cost when χn = 1 includes three aspects: a) the energy
consumption of transmitting and computing task Tn; b) the
communication cost for using licensed V2I channels; and c)
the computing cost for RSU processing task Tn. Accordingly,
the costs for χ = 0 and χ = 1 can be formulated as

Ol
n = �El

n, (13)

and

Ooff
n (χ) = �

(
Etr

n (χ) + Ee
n(χ)

)
+ ξDn + γDnCn, (14)

respectively, where � is a weighting coefficient indicating
the energy consumption cost of one unit energy during task
computing and transmitting [38], ξ is a coefficient indicating
the communication cost required to transmit one unit of
task data by using licensed V2I channels, γ is a coefficient
indicating the computing cost to execute one CPU cycle. Based
on the analysis above, the joint cost of an arbitrary vehicle n
is then given by

Un(χn, χ−n) =

{
λ1 tln + λ2 Ol

n, if χn = 0
λ1t

off
n (χ)+λ2 Ooff

n (χ), if χn = 1
(15)

1The parameters can be adjusted according to different requirements for
latency and offloading cost [30] and can be also determined based on the
multiple criteria decision making theory [37].
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It is noting that the value of λ1t
off
n (χ) + λ2 Ooff

n (χ) is
related to the value of

∑
n∈N χn. Since different vehicles may

have different tasks, different amount of data will be transmit-
ted to the RSU. When one vehicle finishes its transmission
while others do not, or a task is finished by the RSU while
others is not, more communication or computation resources
will be freed up. If this part of resources are utilized by other
vehicles or tasks, the value of λ1t

off
n (χ) + λ2 Ooff

n (χ) will
decreased according to formulas (4), (5), (6), (10) and (11). For
simplicity, in this paper, we assume that the communication
and computation resources assigned to each vehicle keep fixed
once the optimal decisions are made.

For a given vehicle n, it’s purpose is to minimize its joint
cost during the computation offloading decision process, which
is expressed as

min
χn∈{0,1}

Un(χn, χ−n), ∀n ∈ N . (16)

It is obvious from the models presented above that vehicles’
decisions χ are coupled. This is because the decision made
by any vehicle would influence other vehicles in the VEC
network. For example, if too many vehicles make the same
offloading decision through V2I communications, they may
get less licensed channels and this would lead to a low data
rate according to formula (4). A low data rate would therefore
lead to a higher latency and more energy consumption during
transmission. Moreover, in this case, less computation resource
would be allocated to each task, which would lead to a higher
computing time according to formula (8). Instead, it would
be more beneficial for some vehicles to choose the local
computing decision. To obtain the best computation offloading
decision towards a minimum joint cost defined in formula (12)
among vehicles, we design and implement a game theory
based method in the following.

IV. GAME FORMULATION AND NASH EQUILIBRIUM

Different vehicles may pursue their own interests and have
different requirements for latency and offloading cost, the cen-
tralized methods usually have a very high complexity due
to a large state space involving many vehicles and tasks,
which results in a longer convergence time to obtain optimal
offloading decisions [32]. By taking full advantage of the
intelligence of individual vehicles, game theory is a powerful
framework to analyze the intersections among vehicles that
act in their own interests with low complexity [39]. Under the
game theory-based framework, vehicles can self-learn the best
offloading decisions and self-organize into a Nash Equilibrium
state [22]. In such a state, no vehicle is willing to change
its offloading decision. Thus, we believe that a game theory-
based method can ease the burden of leveraging a complex
centralized computation offloading method and reduce the
controlling and signaling overhead between RSU and vehicles.

A. Game Formulation

According to formula (16), each vehicle tries to minimize
its joint cost Un(χn, χ−n). We consider the computation

offloading problem within an offloading period. The distrib-
uted computation offloading game is formulated as

G = 〈N ,A,U〉, (17)

which consists of three parts:

• N is the set of players (i.e., vehicles);
• A = {An}n∈N is the set of decision space of all players,

where An = {0, 1} denotes the set of actions player n
can take;

• U = {U1(χ1, χ−1), U2(χ2, χ−2), . . . , UN (χN , χ−N )}
is the set of joint cost of all players, where Un(χn, χ−n)
denotes the joint cost of vehicle n, as defined in
formula (15).

Each player adjust its decision based on formula (15) to
minimize its joint cost. For example, for two possible decisions
χ̇n and χ̈n of player n, if Un(χ̇n, χ−n) < Un(χ̈n, χ−n),
which means decision χ̇n is more profitable than χ̈n for player
n, then player n would independently and selfishly choose
decision χ̇n to reduce its joint cost. Otherwise, χ̈n would be
a prefer of player n. Due to the independence of players in
making offloading decisions, we call the formulated game G as
the distributed computation offloading game. In the following,
we introduce Nash Equilibrium [20], a very important concept
in game theory.

Definition 1 (Nash Equilibrium): For game G, we call
χ∗ = (χ∗

1, χ
∗
2, . . . , χ

∗
N) a Nash Equilibrium if and only if no

vehicle can further improve its profit by unilaterally changing
its decision at the equilibrium χ∗, i.e.,

Un(χ∗
n, χ∗

−n) < Un(χn, χ∗
−n), ∀χn ∈ An, ∀n ∈ N . (18)

The Nash Equilibrium has a very important property,
i.e., the self-stability property that when at the equilibrium χ∗,
each player obtains its best decision and would not change it.
To reach such an equilibrium state, we now need to prove the
existence of Nash Equilibrium.

B. Existence of Nash Equilibrium of G
To prove the existence of Nash Equilibrium of G, we first

introduce best response [20].
Definition 2 (Best Response): Given the computation

offloading decisions χ−n, if the computation offloading
decision χ∗

n ∈ An meets:

Un(χ∗
n, χ−n) < Un(χn, χ−n), ∀χn ∈ An, (19)

we call χ∗
n a best response.

After observing formulas (18) and (19), it is obvious that
all vehicles make their best response decisions at the Nash
Equilibrium χ∗. In the following, we introduce how to make
the best response.

Lemma 1: Given the computation offloading decisions χ−n

of other vehicles, vehicle n makes its best response according
to the following formula:

χ∗
n =

{
1,

∑
i∈N\{n} χi < Γn − 1,

0, otherwise,
(20)
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where Γn is expressed as

Γn =
λ1t

l
n + λ2�El

n − Ψn

( λ1Dn+λ2�PnDn

LBlog2(1+ Pn|h|2
ω0(dn)ϑ

)
+ λ1DnCn

Mfe )
, (21)

and Ψn is expressed as

Ψn = λ2(�Ee
n(χ) + ξDn + γDnCn). (22)

Proof: According to formula (15), the joint cost can be
reformulated as

Un(χn, χ−n)
= (1 − χn)(λ1 tln + λ2 Ol

n)
+χn(λ1 toff

n (χ) + λ2 Ooff
n (χ))

= (1 − χn)
(

λ1 tln + λ2�El
n

)

+ χn

(
λ1

( Dn

rn(χ)
+

DnCn

∑
i∈N χi

Mfe

)

+ λ2

(�PnDn

rn(χ)
+ �Ee

n(χ) + ξDn + γDnCn

))
. (23)

If the best response decision of vehicle n is χ∗
n = 1, according

to Definition 2, we have

Un(1, χ−n) < Un(0, χ−n). (24)

Combining formulas (23) and (24), we have

λ1

( Dn

rn(χ)
+

DnCn

∑
i∈N χi

Mfe

)
+ λ2

(�PnDn

rn(χ)
+ �Ee

n(χ) + ξDn + γDnCn

)
< λ1t

l
n + λ2�El

n. (25)

That is,

1
rn(χ)

(λ1Dn + λ2�PnDn)

< λ1t
l
n + λ2�El

n − λ2(�Ee
n(χ) + ξDn + γDnCn)

− λ1DnCn

∑
i∈N χi

Mfe
. (26)

For the sake of simplicity, we use Ψ to replace λ2(�Ee
n(χ) +

ξDn + γDnCn), and let’s substitute formula (4) into for-
mula (26), we have∑

i∈N χi

LBlog2(1 + Pn|h|2
ω0(dn)ϑ )

(λ1Dn + λ2�PnDn)

< λ1t
l
n + λ2�El

n − Ψ − λ1DnCn

∑
i∈N χi

Mfe
. (27)

That is,∑
i∈N

χi(
λ1Dn + λ2�PnDn

LBlog2(1 + Pn|h|2
ω0(dn)ϑ )

+
λ1DnCn

Mfe
)

< λ1t
l
n + λ2�El

n − Ψ. (28)

Then we have∑
i∈N

χi < Γn � λ1t
l
n + λ2�El

n − Ψ
( λ1Dn+λ2�PnDn

LBlog2(1+
Pn|h|2

ω0(dn)ϑ
)
+ λ1DnCn

Mfe )
. (29)

That is, ∑
i∈N\{n}

χi < Γn − 1. (30)

Now, we need to prove that the formulated game G has a
Nash Equilibrium, and thus eventually converges after each
vehicle makes the best response decision iteratively. To this
end, we resort to the concept of potential game [21].

Definition 3 (Potential Game): A game is called a potential
game if there exists a function P : χ = (χ1, χ2, . . . , χN ) → R

such that ∀n ∈ N , ∀χ−n ∈ Πi�=nAi, ∀χn, χ′
n ∈ An,

Un(χn, χ−n)−Un(χ′
n, χ−n) = P (χn, χ−n)−P (χ′

n, χ−n).
(31)

Function P is a potential for the potential game.
Since the potential game has the finite improvement property

(FIP) that any better response updating process must be finite
and lead to a Nash Equilibrium [21], [27], we now only need
to prove that our formulated game G is a potential game.

Theorem 1: Our formulated distributed computation
offloading game G = 〈N ,A,U〉 is a potential game with a
potential function and hence always has the FIP and a Nash
Equilibrium.

Proof: According to formulas (15) and (23), we reformu-
late Un(χn, χ−n) as

Un(χn, χ−n) =

{
W l

n, if χn = 0,

W off
n (s), if χn = 1,

(32)

where

W l
n = λ1 tln + λ2�El

n, (33)

W off
n (s) = λ1

( Dn

rn(χ)
+

DnCn

∑
i∈N χi

Mfe

)
+ λ2

(�PnDn

rn(χ)
+ �Ee

n(χ) + ξDn + γDnCn

)

=
λ1Dn + λ2�PnDn

rn(χ)
+

λ1DnCn

∑
i∈N χi

Mfe
+ Ψn

=
∑

i∈N χi

LBlog2(1 + Pn|h|2
ω0(dn)ϑ )

(λ1Dn + λ2�PnDn)

+
λ1DnCn

∑
i∈N χi

Mfe
+ Ψn

= sΩn + Ψn, (34)

where s =
∑

i∈N χi, Ωn and Ψn are two replacement
variables to replace some parameters in formula (34) for the
sake of simplicity, and Ωn is formulated as

Ωn =
λ1Dn + λ2�PnDn

LBlog2(1 + Pn|h|2
ω0(dn)ϑ )

+
λ1DnCn

Mfe
, (35)

and Ψn is as shown in formula (22).
Now we define a function P : χ = (χ1, χ2, . . . , χN) →

R as

P (χn, χ−n) =
s∑

v=1

W off
n (v) + W l

n

N∑
i=1

I{ai=0}, (36)
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where I{·} = 1 when “·” is true and I{·} = 0 when “·” is
false. We suppose an arbitrary vehicle n (n ∈ N ) changes its
decision from χn to χ′

n. Since χn, χ′
n ∈ {0, 1}, there are two

cases considered: 1) χn = 0 and χ′
n = 1; 2) χn = 1 and

χ′
n = 0. We will elaborate on the two cases in the following.
1) χn = 0 and χ′

n = 1: In this case, we have

Un(χn, χ−n) = λ1t
l
n + λ2�El

n = W l
n, (37)

and

Un(χ′
n, χ−n) = (s + 1)Ωn + Ψn = W off

n (s + 1). (38)

According to formula (36), the defined function P can be
expressed as

P (χn, χ−n) =
s∑

v=1

W off
n (v) + W l

n + W l
n

N∑
i=1

I{ai=0,i�=n},

(39)

and

P (χ′
n, χ−n) =

s+1∑
v=1

W off
n (v) + W l

n

N∑
i=1

I{ai=0,i�=n}. (40)

Then,

Un(χn, χ−n) − Un(χ′
n, χ−n) = W l

n − W off
n (s + 1), (41)

and

P (χn, χ−n) − P (χ′
n, χ−n)

=
s∑

v=1

W off
n (v) + W l

n −
s+1∑
v=1

W off
n (v)

= W l
n − W off

n (s + 1). (42)

Accordingly,

Un(χn, χ−n) − Un(χ′
n, χ−n) = P (χn, χ−n) − P (χ′

n, χ−n).
(43)

2) χn = 1 and χ′
n = 0: In this case, we have

Un(χn, χ−n) = (s)Ωn + Ψn = W off
n (s), (44)

and

Un(χ′
n, χ−n) = λ1t

l
n + λ2�El

n = W l
n. (45)

According to formula (36), the defined function P can be
expressed as

P (χn, χ−n) =
s∑

v=1

W off
n (v) + W l

n

N∑
i=1

I{ai=0,i�=n}, (46)

and

P (χ′
n, χ−n) =

s−1∑
v=1

W off
n (v) + W l

n + W l
n

N∑
i=1

I{ai=0,i�=n}.

(47)

Then,

Un(χn, χ−n) − Un(χ′
n, χ−n) = W off

n (s) − W l
n, (48)

and

P (χn, χ−n) − P (χ′
n, χ−n)

=
s∑

v=1

W off
n (v) − (

s−1∑
v=1

W off
n (v) + W l

n)

= W off
n (s) − W l

n. (49)

Accordingly,

Un(χn, χ−n)−Un(χ′
n, χ−n) = P (χn, χ−n) − P (χ′

n, χ−n).
(50)

Theorem 1 and the above derivation proves that G is a
potential game such that the existence of Nash Equilibrium
is guaranteed. And based on the FIP of G, we design a self-
learning based distributed computation offloading (DISCO)
algorithm to reach the Nash Equilibrium in the following.

V. SELF-LEARNING BASED DISTRIBUTED

COMPUTATION OFFLOADING

The key idea of the self-learning based distributed compu-
tation offloading (DISCO) algorithm is making full use of the
FIP of G. In view of this, a finite number of offloading decision
updating iterations can achieve a plateau status. Moreover,
to make the best response decision, a vehicle needs to know the
computation offloading decisions of other vehicles according
to Lemma 1 and formula (20). To this end, we utilize a
message exchange protocol [27]–[30], where vehicles that
have the best response decisions compete for the decision
updating opportunity in a distributed manner and only one
decision is made at a time. More specifically, the best response
updating set of vehicle n is first calculated out according to
Lemma 1 and formula (20) as

Υn � {χ∗
n : Un(χ∗

n, χ−n) < Un(χn, χ−n)}

=

⎧⎪⎪⎨
⎪⎪⎩

{1}, if χn = 0 and
∑

i∈N\{n} χi < Γn − 1,

{0}, if χn = 1 and
∑

i∈N\{n} χi ≥ Γn − 1,

∅, otherwise.

(51)

Then, according to the set of best response updating Υn,
vehicle n decides weather to compete for the decision updating
opportunity. That is,

• if Υn �= ∅, vehicle n will compete for the decision
updating opportunity;

• otherwise, vehicle n will not compete. Instead, it will
keep the current decision unchanged.

To address the potential collisions if multiple vehicles
compete for the decision updating opportunity simultane-
ously, we adopt a random backoff-based mechanism [40].
Specifically, we set the time duration of decision updating
competition as τ . Each competing vehicle initializes a timer
with a backoff time duration σn that obeys a uniform distri-
bution on the interval [0, τ ] and countdowns the timer. If a
competing vehicle has not received any request-to-updating
(RTU) message from other vehicles yet when the timer expires,
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the vehicle will update its decision as defined in formula (51)
and broadcast an RTU message to all other vehicles. If other
competing vehicles receive the RTU message, they will give
up the updating opportunity and keep their current decisions.
It is worth noting that each RTU message includes the ID
of the vehicle and its decision. The broadcasting of RTU
message can be easily achieved by the control channel of
LTE-V communication protocol. And each vehicle keeps a
record memory M to record decisions of other vehicles based
on the received RTU message.

Algorithm 1 Self-Learning Based Distributed Computation
Offloading (DISCO) Algorithm
1: Initialization
2: Initialize the decision of each vehicle as χn = 0
3: Initialize record memory of each vehicle as Mn = {0, . . .}
4: Calculate the initial value of joint cost Un of each vehicle
5: End Initialization
6: Begin
7: for iteration k = 1, 2, 3, . . .:
8: for each vehicle n in parallel:
9: do:

10: Obtain decision profile χ based on Mn

11: Calculate Υn according to formula (51)
12: if Υn �= ∅ then
13: Compete for the decision updating opportunity
14: if win the competition opportunity then
15: Choose the decision in Υn

16: Broadcast the RTU message
17: else
18: Keep χn unchanged
19: end if
20: else
21: Keep χn unchanged at the next iteration
22: end if
23: until no RTU message is broadcasted
24: end for
25: end for
26: for each vehicle n in parallel:
27: Execute the computation offloading decision χn obtained

at the last iteration
28: end for
29: End

According to the FIP, after a finite number of iterations,
the formulated game G would converge to a Nash Equilibrium.
At the Nash Equilibrium point, no vehicle would change
its decision thus no RTU message would be broadcasted.
In view of this, we judge that the iterations can terminate
if no RTU message is broadcasted. Algorithm 1 presents the
detailed DISCO algorithm consisting of Self-Learning Stage
and Executing Stage. At the Self-Learning Stage, as shown in
Lines 1-25 of Algorithm 1, each vehicle learns from its indi-
vidual information and the decision profile of other vehicles
to make the best response decision through broadcasting RTU
message. At the Executing Stage, as shown in Lines 26-28 of

Algorithm 1, each vehicle executes its best response decision
learned at the Self-Learning Stage.

It is obvious that the Self-Learning Stage impacts the effi-
ciency of the proposed DISCO algorithm the most. For each
iteration, only basic arithmetical calculations will be executed
by N vehicle as shown in in Lines 10-22 of Algorithm 1.
Accordingly, the computational complexity for each iteration
is O(N). Since the iteration will terminate after a finite num-
ber of iterations according to the FIP of game G, let K denote
the number of iterations for DISCO to converge. Accordingly,
O(KN) is the total computational complexity of DISCO.
Since the computational time is very short, generally several
microseconds, this part of time can be ignored. Accordingly,
the time length of each iteration during the Self-Learning
Stage is mainly depending on the time duration of decision
updating competition and the RTU message broadcasting time.
For the time duration of decision updating competition, since
τ can be very short, generally several milliseconds, we set
τ = 10 ms in our paper. For the RTU message broadcasting
time, since it depends on the size of RTU message and such
RTU message that only containing the user’s ID and decision
is very small, generally several milliseconds [41]. Accordingly,
the proposed DISCO algorithm has a fast convergence, which
will be verified in the following.

It is noting that vehicles may enter and leave the coverage
of the RSU during self-learning and task offloading, leading
to a failed result reception from RSU. To address this issue,
we can first adopt a duration prediction method to evaluate the
link duration between vehicles and RSU based on the current
position and speed of vehicles, and the position of RSU. Then,
a threshold duration is set, guaranteeing the task processing
result can be returned before the vehicle leaves the coverage
of the RSU. Only the vehicles whose predicted link duration
is longer than the threshold duration can participate in the
gaming and task offloading process. Another way is utilizing
the cooperation between adjacent RSUs. The remaining task
data can be offloaded to the next RSU if the vehicle leaves the
coverage of the current RSU during task offloading, or can be
migrated from the current RSU to the next RSU if the vehicle
leaves the coverage of the current RSU during task processing.
For simplicity, in this paper, we assume that all vehicles with
offloading tasks are still in the coverage range of the current
RSU during the period from the beginning of self-learning
process to the time when results are received.

VI. SIMULATION RESULTS AND DISCUSSIONS

In this section, we conduct simulations to validate the per-
formance of the proposed DISCO algorithm. We first describe
the simulation setup and then discuss the simulation results.

A. Simulation Setup

We consider a two-way two-lane scenario. The length and
width of each lane are 1000 m and 4 m, respectively. And one
RSU is deployed in the middle of roadside, with coordinate
(0, 0). The trajectory of vehicles is randomly chosen from
GAIA Open Dataset of DiDi Express [42]. The coverage
radius of RSU and vehicles are set to 500 m and 250 m,
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TABLE II

PARAMETERS SETTING ABOUT VEHICLES AND RSU

respectively. The data size is randomly distributed between
1 and 10 Mbit. The detailed parameters setting about vehicles
and RSU is shown in Table II. We use a GPU-based server
with 4 NVIDIA GTX2080 Ti GPUs, where the CPU is Intel
Xeno(R) E5-2690v4 with 64 G memory. Software environment
we utilize is Python 3.7 on Ubuntu16.04.6 LTS.

B. Simulation Results

We consider the following schemes as benchmarks to
evaluate our proposed DISCO:

• Offload-Comp-Only (OCO), where all vehicles offload
their computation tasks to RSU to be processed;

• Local-Comp-Only (LCO), where all vehicles compute
their computation tasks locally.

• Random-Offload (RO), where each vehicle choose
decision 1 or 0 randomly.

• JROPSO, which is a centralized computational offloading
decision algorithm based on particle swarm optimization
(PSO) [43].

1) Effectiveness: We first evaluate the timeliness and effec-
tiveness of the proposed DISCO algorithm. In this set of
simulations, we set N = 40, L = 30, λ1 = λ2 = 0.5,
Dn obeys an uniform distribution on interval [1, 10] Mbit.
Fig. 2 shows the changes in the system-wide joint cost
(i.e.,

∑
n∈N Un(χn, χ−n)) obtained by iterations under dif-

ferent schemes. The figure indicates that the system-wide
joint cost of DISCO tends to be optimal and stable in about
50 iterations. As analyzed in Section V, since the time length
of each iteration is very short (generally in the unit of mil-
lisecond), the convergence time of the proposed DISCO is also
very short. Accordingly, the proposed DISCO algorithm has

Fig. 2. System-wide joint cost achieved during iterations.

Fig. 3. System joint cost under different average data size.

a fast convergence. Moreover, the system joint cost of DISCO
is lower than both LCO and OCO schemes. This is because
the vehicles in our proposed DISCO continue to learn the
best response decision to minimize their joint costs. However,
a high joint cost will be produced if the task with big data
size is computed locally by the LCO scheme or if the task
with small data size is offloaded to RSU to be processed by
the OCO scheme. Besides, the system joint cost of the RO
scheme fluctuates dramatically over iterations and higher than
that of the proposed DISCO algorithm.

2) System Joint Cost: Fig. 3 shows the relationship between
system joint cost and average data size when we set N = 40,
L = 30, and λ1 = λ2 = 0.5. It can be seen that the
system joint costs of all schemes increase with the increasing
of average data size. Because a larger data size requires
more communication (if offloaded) and computing costs. The
proposed DISCO outperforms LCO, OCO and RO, and can
reduce up to 14%, 23% and 18% system joint cost over the
three schemes, respectively. Compared with the centralized
JROPSO, the performance loss of DISCO is less than 7%.
Moreover, the performance of OCO is worse than LCO when
average data size is small and becoming better than LCO when
average data size is getting bigger. This is because when data
size is small, computing time cost of local computing will be
smaller compared with the cost of RSU computing. And when
data size is big, severe computing time will be caused by local
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TABLE III

THE NUMBER OF VEHICLES CHOOSING DECISION 0 OR 1 WITH DIFFERENT AVERAGE DATA SIZE OF DISCO

Fig. 4. Latency cost and energy cost under different average data size.

computing thus results in a higher joint cost compared with
RSU computing. To verify this point, we further show how
the number of vehicles choosing decision 0 and 1 changes
under different average data size of our proposed DISCO.
As shown in Table III, the number of vehicles choosing
decision 1 increases while the number of vehicles choosing
decision 0 decreases as the average data size increases.

Since the system joint cost is a weighted system cost, it is
hard to understand the cost of each component. To provide a
more straightforward understanding, we present in Fig. 4 the
real value of latency and energy cost of Fig. 3. For the latency
cost, as shown in Fig. 4(a), the LCO has the worst performance
since the limited local computation capacity causing long
computing time. For the latency cost, as shown in Fig. 4(b),
the LCO also has the worst performance since long latency
causing more energy corruption.

Fig. 5 shows how communication resource (i.e., the number
of channels L) impacts the system joint cost when we set

Fig. 5. System joint cost under different number of channels.

Fig. 6. System joint cost under different number of vehicles.

N = 40, λ1 = λ2 = 0.5, and Dn obeys an uniform
distribution on interval [1, 10] Mbit. The system joint costs
of all schemes except LCO decrease with the increasing L.
Because more communication resources will be obtained for
vehicles choosing decision 1 if L increases, thus transmission
time cost is reduced. The proposed DISCO outperforms LCO,
OCO, and RO, which can reduce up to 13%, 10%, and 12%
system joint cost over the three schemes, respectively, with
less than 3% performance loss compared with JROPSO.

Fig. 6 shows how the number of vehicles impacts the
system joint cost when we set L = 30, λ1 = λ2 = 0.5,
and Dn obeys an uniform distribution on interval [1, 10]
Mbit. It shows the system joint costs of all schemes increase
with the increasing number of vehicles. The proposed DISCO
outperforms LCO, OCO, and RO, which can reduce up to
29%, 5%, and 23% system joint cost over the three schemes,
respectively, with less than 12% performance loss compared
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Fig. 7. Time overhead and message overhead.

with JROPSO. Moreover, the performance gap between
DISCO and OCO is increasing with the number of vehicles.
Because the average communication resource each vehicle can
obtain is getting smaller if the number of vehicles increases
for the OCO scheme, thus severe transmission time cost will
be produced. The vehicles in our proposed DISCO can choose
decision 0 or 1 intelligently towards a minimum joint cost.

3) Overhead: We evaluate the overhead performance
between DISCO and JROPSO on two aspects, i.e., the algo-
rithm execution time overhead (hereinafter referred to as time
overhead for short) and controlling and signaling overhead
(i.e., the number of messages exchanged among vehicles and
between vehicles and RSU, hereinafter referred to as message
overhead for short).

Fig. 7(a) shows the time overhead comparison when we
set L = 30, λ1 = λ2 = 0.5, and Dn obeys an uniform
distribution on interval [1, 10] Mbit. It demonstrates that
the time overhead of DISCO is much lower than that of
JROPSO. The order-of-magnitude of DISCO’s time overhead
is in milliseconds while the order-of-magnitude of JROPSO’s
time overhead is in seconds. Accordingly, DISCO can achieve
an order-of-magnitude improvement on time overhead over
JROPSO. The reasons are twofold. The first one is that
massive information from all vehicles needs to be collected,
processed and calculated to obtain a global optimal offloading
scheme by continuous iterations for JROPSO. For DISCO,

Fig. 8. Offloading choices under different λ1 and λ2.

each vehicle only needs the decision profile of other vehicles
and calculates its best response decision in a distributed
and parallel way, which reduces the time overhead. Most
importantly, the JROPSO algorithm itself, as a centralized
algorithm, has a higher computational complexity as many
centralized heuristic algorithm do. As analyzed in Section V,
only basic arithmetical calculations will be executed by N
vehicles for each iteration, the computational complexity is
very low. However, for JROPSO algorithm, massive calcu-
lations will be executed in each iteration since the number
of particles and the scale of the problem jointly determine
the computational complexity. And more iterations are needed
for JROPSO algorithm to converge, leading to a much longer
convergence time.

Fig. 7(b) shows message overhead comparison when we set
L = 30, λ1 = λ2 = 0.5, and Dn obeys an uniform distribution
on interval [1, 10] Mbit. It can be seen that the message
overhead of DISCO is much lower than that of JROPSO.
Specifically, DISCO can reduce message overhead by at least
88% over JROPSO under different numbers of vehicles. The
reason is that for DISCO, message overhead is produced
only when a vehicle successfully wins the decision updating
opportunity and updates its offloading decision. While for
JROPSO, all information of each vehicle is needed to send
to RSU, including the task data size, the processing density
of data, the local processing density, the transmission power,
the position, and many other parameters. There is another main
concern for JROPSO that some vehicles may be unwilling to
send their information due to privacy concerns and hence are
unwilling to participate in the centralized optimal offloading
algorithm. And our proposed DISCO has the advantage of not
having to consider the privacy issue. Because each vehicle can
make the best response decision locally without exposing its
local parameters.

4) Weighting Parameters λ1 and λ2: Fig. 8 shows how
different λ1 and λ2 impact vehicles’ offloading decisions.
In this set of simulation, we set N = 40, L = 30, λ1 ∈
[0, 1] λ2 ∈ [0, 1], and λ1 + λ2 = 1. More vehicles tend
to choose local computing when the weighting parameter of
latency λ1 is small. In this case, we emphasize more on a
lower cost. Offloading tasks to the RSU would produce more
costs by using communication and computation resources.
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Fig. 9. Number of iterations.

Since our proposed DISCO tries to minimize the joint cost,
more vehicles gradually learn that they should choose a deci-
sion 0. When the weighting of latency λ1 is becoming bigger
(i.e., IoV applications seek a lower latency rather than cost),
more vehicles tend to offload their tasks to the RSU. In this
case, the powerful computing capacity of RSU can reduce the
computing time if a decision 1 is chosen. More vehicles would
gradually choose to offload their tasks to RSU for minimizing
the joint cost by our proposed DISCO.

5) Convergence Under Different Number of Vehicles: Fig. 9
shows the average number of iterations for DISCO to converge
to a Nash Equilibrium. As shown, the average number of
iterations increases linearly with the number of vehicles,
which indicates that our proposed DISCO scales well with the
number of vehicles. This is another advantage of DISCO over
the centralized offloading algorithms whose computational
complexities usually increase exponentially with the number
of vehicles.

VII. CONCLUSION

In this paper, we have investigated the computation offload-
ing problem and proposed a self-learning based distributed
computation offloading scheme for IoV. Specifically, we first
established an offloading framework with communication and
computation for IoV. Then we formulated a distributed com-
putation offloading game, where each vehicle as a player
makes an offloading decision to minimize its own joint
cost. We proved that our formulated distributed computation
offloading game admits a Nash Equilibrium. To get to the
Nash Equilibrium of the formulated game, we designed a self-
learning based distributed computation offloading (DISCO)
algorithm. Since no control center is required, DISCO is a
very practical algorithm. Finally, we used real-world vehicular
traces to implement extensive simulations, which verified the
performance of DISCO. Our proposed DISCO scheme can
achieve at least an order-of-magnitude improvement on time
overhead and 88% performance gain on message overhead,
only at up to 12% performance loss on system joint cost,
compared with the centralized scheme.

In the future, we will consider continuous tasks and utilize
the dynamic game to analyze the offloading decision-making
problem for a more practical Internet of vehicle scenario.

Also, we should consider the benefits obtained by service
providers thus contract-based method should be combined
with a game theory-based method. The mobility of vehicles
and the handover between different RSUs should be also
considered.
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