IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 20, NO. 9, SEPTEMBER 2021

5913

Self-Learning Based Computation Offloading for
Internet of Vehicles: Model and Algorithm

Quyuan Luo

Abstract— With the fast development of Internet of Vehicles
(IoV), various types of computation-intensive vehicular applica-
tions pose significant challenges to resource-constrained vehicles.
The emerging Vehicular Edge Computing (VEC) and Edge
Intelligence (EI) can alleviate this situation by offloading the
computation tasks of vehicles to the roadside edge servers.
However, with many vehicles contending for the communication
and computation resources at the same time, how to quickly
and efficiently make an optimal computation offloading decision
for individual vehicles represents a fundamental research issue.
In this paper, we propose a self-learning based distributed
computation offloading scheme for IoV. Note that without any
centralized controller, a fully distributed algorithm is necessary.
The proposed scheme is devised based on a game-theoretic
model. Specifically, through establishing an offloading framework
with communication and computation for IoV, the computation
offloading problem is first formulated as a distributed offloading
decision-making game, in which each vehicle as a player makes
its best response decision to minimize its joint cost (including
latency and offloading cost). The existence of Nash Equilib-
rium can be proved. We then propose a self-learning based
distributed computation offloading (DISCO) algorithm to reach
the Nash Equilibrium, where a mutually satisfactory solution
among vehicles is obtained and no vehicle is willing to change
its decision. Using extensive simulations, we verify that DISCO
can outperform the counterparts and achieve at least an order-of-
magnitude improvement on time overhead and 88% performance
gain on message overhead, only at up to 12% performance loss
on joint cost over the centralized scheme.

Manuscript received July 31, 2020; revised January 3, 2021 and
March 10, 2021; accepted March 21, 2021. Date of publication April 13,
2021; date of current version September 10, 2021. This work was supported
in part by the Fundamental Research Funds for the Central Universities,
in part by the National Natural Science Foundation of China under Grant
U1801266 and Grant 61731017, and in part by the Scholarship from the
China Scholarship Council. The associate editor coordinating the review of
this article and approving it for publication was Y. Shen. (Corresponding
author: Changle Li.)

Quyuan Luo is with the School of Information Science and Technology,
Southwest Jiaotong University, Chengdu 611756, China, also with the State
Key Laboratory of Integrated Services Networks, Xidian University, Xi’an
710071, China, and also with the Department of Computer Science, Wayne
State University, Detroit, MI 48202 USA (e-mail: qyluo@swjtu.edu.cn).

Changle Li is with the State Key Laboratory of Integrated Services Net-
works, Xidian University, Xi’an 710071, China, and also with the Research
Institute of Smart Transportation, Xidian University, Xi’an 710071, China
(e-mail: clli@mail.xidian.edu.cn).

Tom H. Luan is with the School of Cyber Engineering, Xidian University,
Xi’an 710071, China (e-mail: tom.luan@xidian.edu.cn).

Weisong Shi is with the Department of Computer Science, Wayne State
University, Detroit, MI 48202 USA (e-mail: weisong@wayne.edu).

Weigang Wu is with the School of Data and Computer Science, Sun Yat-sen
University, Guangzhou 510006, China (e-mail: wuweig@mail.sysu.edu.cn).

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TWC.2021.3071248.

Digital Object Identifier 10.1109/TWC.2021.3071248

, Changle Li™, Senior Member, IEEE, Tom H. Luan™, Senior Member, IEEE,
Weisong Shi™, Fellow, IEEE, and Weigang Wu

, Member, IEEE

Index Terms— Vehicular edge computing, distributed compu-
tation offloading, game theory, Nash equilibrium, self-learning.

I. INTRODUCTION

HE Internet of Vehicles (IoV) has recently attracted

increasing interests from both academic and industry
[1]-[3]. By integrating the advanced computation and com-
munication in one platform, IoV can support various types
of vehicular applications, such as autonomous driving, precise
fleet management, and real-time video analytics [4], [5], and
plays a crucial role toward the next-generation intelligent
transportation system [6].

The powerful and resource-hungry applications of IoV, how-
ever, require intensive real-time computation, which poses sig-
nificant challenges on resource-constrained IoV [7]. To address
the issue, the paradigm of Vehicular Edge Computing (VEC)
has been proposed [8]. In VEC, the IoV can offload the
computation-intensive tasks to roadside units (RSUs) that are
equipped with edge servers [9] which deploys and trains
powerful machine learning models, i.e., Edge Intelligence (EI),
to help data processing for driving through IoV [10]-[12].
However, note that each connected IoV to VEC may present
random demand and different urgencies of tasks, how to make
proper offloading decisions for IoV by jointly considering
radio and computing resources deserves investigation.

Several previous efforts have focused on the computation
offloading [9], [13]-[18]. In these works, the computation
offloading is mostly formulated as a resource allocation
problem through either minimizing the total latency or cost
or maximizing the system utility. Marvelous solutions are
proposed to solve these optimization problems. They often
adopted centralized optimization methods by collecting com-
plete information from vehicles, which requires frequent state
information updating to optimize the system performance and
results in a high system overhead [19]. Even so, global optimal
solutions generally cannot be obtained due to the complexity
of the centralized optimization problems, instead, some kind
of heuristic solutions are obtained. Moreover, some vehicles
may be unwilling to send their information due to privacy
concerns and hence are unwilling to participate in centralized
optimization. Accordingly, it is imperative for vehicles to self-
learn the best offloading decisions for their own profits in a
distributed manner.

Motivated by the aforementioned discussion, we aim to pro-
pose and design a distributed computation offloading scheme

1536-1276 © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: SOUTHWEST JIAOTONG UNIVERSITY. Downloaded on September 18,2021 at 01:48:58 UTC from IEEE Xplore. Restrictions apply.


https://orcid.org/0000-0003-2948-3491
https://orcid.org/0000-0003-2568-8908
https://orcid.org/0000-0002-5215-7443
https://orcid.org/0000-0001-5864-4675
https://orcid.org/0000-0002-4714-7021

5914

for IoV, where each vehicle can make an offloading decision
independently. To this end, in this paper, we propose a self-
learning based distributed computation offloading scheme for
IoV. Specifically, we first establish an offloading framework
with communication and computation for IoV, in which each
IoV tries to obtain its best computation offloading decision
in pursuit of a minimum joint cost. Then, we formulate the
computation offloading problem as a distributed offloading
decision-making game, which can analyze the intersections
among multiple IoVs that act in their own interests. By utiliz-
ing the concept of best response [20] and potential game [21],
we prove the existence of Nash Equilibrium [22] of our
formulated game. To reach the Nash Equilibrium, we pro-
pose a self-learning based distributed computation offloading
(DISCO) algorithm. With DISCO, each IoV can learn the best
response decision automatically and independently towards
an equilibrium state, where no IoV is willing to unilaterally
change its offloading decision. The contributions of this paper
can be summarized as follows.

1) Model: We establish an offloading framework with both
communication and computation for IoV. Under the
framework, we formulate the computation offloading
problem as a distributed offloading decision-making
game to analyze the intersections among multiple IoV,
where each IoV acts in its own interest.

2) Algorithm: After we prove the existence of Nash Equi-
librium of the game, we propose a self-learning based
distributed computation offloading (DISCO) algorithm,
where each IoV learns from its individual information
and the decision profile of other vehicles to make its best
response decision. No control center is required, DISCO
is a very practical algorithm.

3) Validation: We use real-world vehicular traces to con-
duct extensive simulations, which demonstrates the
effectiveness of our proposed DISCO over counterparts.
How different variables (such as task data size, num-
ber of vehicles, communication resource, weightings of
latency and cost) impact the system performance is also
presented by simulation results.

The remainder of this paper is organized as follows. The
related work is presented in Section II. In Section III, we depict
the offloading framework with communication and compu-
tation for IoV. The game formulation and the existence of
Nash Equilibrium are introduced in Section IV. The proposed
DISCO algorithm is presented in Section V. In Section VI,
extensive simulation results are discussed. The conclusion is
drawn in Section VII.

II. RELATED WORK

In this section, we survey the existing literature on compu-
tation offloading for IoV both in centralized and decentralized
manners.

There are some works studying computation offloading. The
authors in [14] propose a dual-side dynamic joint task offload-
ing and resource allocation algorithm in vehicular networks
(DDORYV), which utilizes Lyapunov optimization theory to
minimize the averaged cost of mobile edge computing (MEC)

IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 20, NO. 9, SEPTEMBER 2021

enabled roadside unites and vehicular terminal. Through
derivation and comparing the values of local processing cost
and task offloading cost, the optimization problem on the
vehicular terminal side is solved. For the optimization issue on
the MEC server side, the Lagrangian dual decomposition and
continuous relaxation method are adopted. The authors in [9]
propose a cloud-based MEC offloading framework in vehicular
networks, where both the heterogeneous requirements of the
mobility of the vehicles and the computation tasks are consid-
ered. Based on the analysis of the characteristics of various
offloading strategies, the authors further propose a predictive-
mode transmission scheme for task-file uploading. The work
in [23] proposes a Lyapunov-based dynamic offloading deci-
sion algorithm for flexible subtasks by jointly considering
energy consumption and packet drop rate. To address the
overload problem in the edge server, the work in [8] integrates
load balancing and offloading problems in the VEC network.

Most of the existing computation offloading problems are
mixed-integer non-linear programming (MINLP) problems.
They are generally NP-hard and are not computable in polyno-
mial time with existing general solvers. Generally speaking,
the complex optimization problem is decomposed into sub-
problems, and the near-optimal solution is derived by solving
those subproblems respectively [14]. Recently, many works
consider utilizing deep reinforcement learning based methods
to solve the complex computation offloading problem. The
authors in [24] present a reinforcement learning based mobile
offloading scheme for edge computing against jamming attacks
and interference, which uses safe reinforcement learning to
avoid choosing the risky offloading policy that fails to meet
the computational latency requirements of the tasks. The
authors in [25] propose two deep reinforcement learning based
dynamic computation offloading algorithms for mobile edge
computing systems with energy harvesting devices, which
addressed the challenges of continuous-discrete hybrid action
spaces and coordination among devices.

Other works study the computation offloading in a decen-
tralized manner. The literature [16] proposes a hierarchical
cloud-based VEC offloading framework to improve the quality
of offloading service that may be endangered by the compu-
tation limitation of MEC servers. And a Stackelberg game-
based method is adopted to maximize the utilities of both
computing servers and vehicles. Authors in [26] consider
the latency of computation offloading as the computation
overhead of vehicles and try to reduce it through a multi-
user distributed computation offloading algorithm based on
game theory. Authors in [27] and [28] propose a game
theory-based multi-user distributed computation offloading
algorithms for mobile cloud computing and mobile-edge
cloud computing, respectively. The work in [29] proposes a
fully distributed computation offloading (FDCO) algorithm to
address the multi-user computation offloading problem for
cloudlet-based mobile cloud computing in a multi-channel
wireless contention environment. The work in [30] considers
the problem of computation offloading while achieving a
trade-off between execution time and energy consumption
in an unmanned areal vehicle (UAV) network, where the
combination of energy overhead and latency is minimized by

Authorized licensed use limited to: SOUTHWEST JIAOTONG UNIVERSITY. Downloaded on September 18,2021 at 01:48:58 UTC from IEEE Xplore. Restrictions apply.



LUO et al.: SELF-LEARNING BASED COMPUTATION OFFLOADING FOR I0V: MODEL AND ALGORITHM

N ;
)

Input| [2eding
task Cocal CPU
computing

Computation offloading in a VEC network.

Fig. 1.

the designed game theory model. The work in [31] formulate
a distributed computation offloading problem among mobile
users as an exact potential game and propose a distributed
offloading scheme based on Q-learning and better-response.
To improve the task offloading delay performance, authors
in [19] and [32] respectively proposed an adaptive learning
based offloading algorithm and an online learning-based task
replication algorithm based on multi-armed bandit theory. The
authors in [33] propose a contract-based traffic offloading
and resource allocation mechanism for the software-defined
wireless network (SDWN)-cased heterogeneous ultra-dense
networks (HetUDN), where each small-cell base station (SBS)
selects the contract that achieves its own maximum utility.

All these works above are marvelous solutions. However, for
the centralized computation offloading, complete information
of all vehicles should be collected, which results in a high
system overhead. Generally speaking, the global optimal solu-
tion cannot be obtained even with the complete information
because of the complexity of centralized methods. For the
distributed computation offloading, most existing works only
consider a single performance index such as delay or a sim-
ple combination of delay and energy consumption, ignoring
other important performance indexes such as communication
cost and computation cost. In light of the existing works,
considering energy consumption, communication cost and
computation cost as the offloading cost, we formulate the
computation offloading as a distributed game to minimize the
combination of latency and offloading cost and propose a self-
learning based distributed computation offloading (DISCO)
algorithm to reach the Nash Equilibrium, as well as provide
detailed analysis on how different variables impact the system
performance from simulation results.

III. OFFLOADING FRAMEWORK WITH COMMUNICATION
AND COMPUTATION FOR [0V

A. System Description

For convenience, the main notations used are summarized
in Table 1. Fig. 1 shows the computation offloading in a
VEC network. The road is divided into segments, and each
covered by a roadside unit (RSU) with a roadside edge
server (RES). We consider an LTE-V network composed of
vehicles and roadside units (RSUs) deployed along the road.
And each vehicle has an LTE-V radio interface to establish

5915

TABLE I
MAJOR NOTATIONS

Notation | Explanation
B Bandwidth of each licensed channel
Cy Processing density of computation task 7,
D, Data size of computation task 7,
dy, Distance between vehicle n and RSU
fe Processing capability of RSU
1! Processing capability of vehicle n
h Channel fading coefficient
Kn Coefficients related to power in vehicle
Ke Coefficients related to power in RSU
I Number of licensed channels for V2I
communication
M Number of processing cores of RES
enable RSU
N,N Set and number of vehicles
pY Transmission power of vehicle n
Xn Offloading decision of vehicle n
X Offloading decision profile of all vehicles
X—n Offloading decisions of other vehicles
Y Path loss exponent
wo White Gaussian noise power
AL, A2 Weighting parameters of latency and cost
Energy consumption cost of one unit energy
0 during task computing and transmitting
Communication cost to transmit one unit
¢ of task data by using licensed V2I channels
5y Computing cost to execute one CPU cycle

a communication link with RSU. We consider a coverage
area of one RSU and a set of NV = {1,2,..., N} Internet
of Vehicles (hereinafter referred to as wvehicle for short).
The RSU can provide powerful computing capacity due to
the deployed RES. Each vehicle has a latency-sensitive and
computation-intensive task to be processed. We use two items
to describe the computation task of vehicle n (n € N),
ie, T, & {D,,C,}, where D,, stands for the data size
of T,, and C), stands for the processing density (in CPU
cycles/bit) of T,,. Vehicles can establish a communication
link with RSU through the orthogonal licensed vehicle-to-
infrastructure (V2I) channels, each with the bandwidth of B.
The number of licensed channels for V2I communication is
denoted by L. We use an indicator Y, to denote the task
offloading decision of vehicle n, where y,, = 0 indicates that
task 7, is computed locally by vehicle n, and y,, = 1 indicates
that task 7T, is offloaded to RSU to be processed through V2I
communication. In the following, we will elaborate on the two
cases, respectively.

B. Task Processed Locally

If vehicle n choose x, = 0, task 7;, will be processed
locally by vehicle n. Let f! denote the processing capability
(i.e., the amount of CPU frequency in cycles/s) at vehicle n
assigned for local computing, then the power consumption for

Authorized licensed use limited to: SOUTHWEST JIAOTONG UNIVERSITY. Downloaded on September 18,2021 at 01:48:58 UTC from IEEE Xplore. Restrictions apply.



5916

vehicle n to process task 73, locally is expressed as

l

Pl = rn(fL)?, (1)

where x,, is a coefficient related to power in vehicle n [34].
The local execution time of task 7}, is then given by

D,.Cy
fi

Accordingly, the energy consumption of vehicle n for local
processing is expressed as

I _
tnf

)

EiL = plnti = "annCn(fTIL)Q' (3)

C. Task Offloaded to RSU

If vehicle n choose x,, = 1, task T;, will be offloaded to
RSU to be processed. Since the processing result is usually
very tiny, we neglect the output return process and just focus
on transmitting data to RSU [14]. There exist two procedures
to accomplish the task computing in RSU, which will be
presented in the following.

1) Task Transmission: For ease of analysis, we consider the
system to be quasi-static so that the wireless channels and the
topology of the system keep unchanged during an offloading
period [27]. Let h denote the channel fading coefficient,
which is modeled as a circularly symmetric complex Gaussian
random variable [35]. When task is transmitted from vehicle
n to RSU on licensed V2I channels, the transmission rate is
given by

P, |hJ?
Ene/\f Xn WO(dn)ﬁ 7

where P, is the transmission power of vehicle n, wy denotes
the white Gaussian noise power, x is the decision profile of all
vehicles, denoted by x = (x1, X2, .-, XN~ ), dn, and ¥ denote
the distance from vehicle n to RSU and the path loss exponent,
respectively. Since we consider all » - xn vehicles share
the L channels, each vehicle can obtain L channels.
It is notable that the powerful RES renders the %ﬁge computing
time of offloaded tasks rather small. Therefore, for simplicity,
the vehicle is assumed to stay stationary while performing
edge computing [36]. Accordingly, when transmitting task 7,
the transmission time is expressed as

T (X) = Blog, (1 + “)

D
tn () = — =, )
&) 7 (X)
and the energy consumption is expressed as
P,D,
E(X) = Paty] = —— ©)

rn(X) .

2) Task Computed by RSU: After task T, is transmitted
from vehicle n to RSU, it will be computed by the deployed
RES. Let M denote the number of processing cores of the RES
enabled RSU, and the processing capability (i.e., the amount of
CPU frequency in cycles/s) of each core as f€¢, then the power
consumption of each core to compute task is expressed as

p° = ke(f€)?, )

IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 20, NO. 9, SEPTEMBER 2021

where k. is a coefficient related to power in RSU [34].
Accordingly, the execution time and energy consumption of
RSU for compute task T}, can be expressed as

n X - M fe - Mfe ’
2nen Xn

and

Ef(x) = Pt (x) = ke DnCn(f9)2. (9)

ZnEN X’ﬂ
Accordingly, the total latency for processing task 7}, when
it is offloaded to RSU is expressed as

7 (x) =t (x) + (%)
D, D, Cy, n
_ + Z”fN Xn. (10)
T'n (X) Mf

Similarly, the total energy consumption for processing task 77,
when it is offloaded to RSU is expressed as

EH(x) = E (x) + E;,(x)

P,D
== + ke DnCr (f€ 2,

D. Joint Cost and Problem Formulation

(1)

For a given task T, costs for processing this task would be
produced. Just like the cost defined in [27], the execution cost
defined in [29], and the utility function defined in [30], we use
the term joint cost to define the overall cost to process task 77,
as the combination of latency and offloading cost, expressed as

Un(Xn,X_n) = M1 Latency + \;Cost, 12)

where x_,, = (X1,---sXn-1,Xn+1,xn) denotes the task
offloading decisions of other vehicles, A\; and \s denote the
weighting parameters of latency and offloading cost, respec-
tively.! Specifically, the Cost when x,, = 0 only includes the
energy consumption for vehicle n computing task 7,,, while
the C'ost when x,, = 1 includes three aspects: a) the energy
consumption of transmitting and computing task 7,,; b) the
communication cost for using licensed V2I channels; and c)
the computing cost for RSU processing task 7;,. Accordingly,
the costs for x = 0 and x = 1 can be formulated as

Ol = oE!, (13)

and
037 (x) = (B () + B (X)) + €Dn +7DuCry (14)

respectively, where o is a weighting coefficient indicating
the energy consumption cost of one unit energy during task
computing and transmitting [38], ¢ is a coefficient indicating
the communication cost required to transmit one unit of
task data by using licensed V2I channels, v is a coefficient
indicating the computing cost to execute one CPU cycle. Based
on the analysis above, the joint cost of an arbitrary vehicle n
is then given by

M th 4+ o O, if X, =0
Ir If ; (15)
Mt (x)+A2 0777 (x), if

Un(Xan—n) = { Xn =1

IThe parameters can be adjusted according to different requirements for
latency and offloading cost [30] and can be also determined based on the
multiple criteria decision making theory [37].

Authorized licensed use limited to: SOUTHWEST JIAOTONG UNIVERSITY. Downloaded on September 18,2021 at 01:48:58 UTC from IEEE Xplore. Restrictions apply.



LUO et al.: SELF-LEARNING BASED COMPUTATION OFFLOADING FOR I0V: MODEL AND ALGORITHM

It is noting that the value of A\;22/7(x) + Ay O/F(x) is
related to the value of ) _ - x». Since different vehicles may
have different tasks, different amount of data will be transmit-
ted to the RSU. When one vehicle finishes its transmission
while others do not, or a task is finished by the RSU while
others is not, more communication or computation resources
will be freed up. If this part of resources are utilized by other
vehicles or tasks, the value of /\1t;’Lf F(x) + Az O;’Lf f (x) will
decreased according to formulas (4), (5), (6), (10) and (11). For
simplicity, in this paper, we assume that the communication
and computation resources assigned to each vehicle keep fixed
once the optimal decisions are made.

For a given vehicle n, it’s purpose is to minimize its joint
cost during the computation offloading decision process, which
is expressed as

min U, (Xn,X_n), VneN. (16)

xn€{0,1}

It is obvious from the models presented above that vehicles’
decisions x are coupled. This is because the decision made
by any vehicle would influence other vehicles in the VEC
network. For example, if too many vehicles make the same
offloading decision through V2I communications, they may
get less licensed channels and this would lead to a low data
rate according to formula (4). A low data rate would therefore
lead to a higher latency and more energy consumption during
transmission. Moreover, in this case, less computation resource
would be allocated to each task, which would lead to a higher
computing time according to formula (8). Instead, it would
be more beneficial for some vehicles to choose the local
computing decision. To obtain the best computation offloading
decision towards a minimum joint cost defined in formula (12)
among vehicles, we design and implement a game theory
based method in the following.

IV. GAME FORMULATION AND NASH EQUILIBRIUM

Different vehicles may pursue their own interests and have
different requirements for latency and offloading cost, the cen-
tralized methods usually have a very high complexity due
to a large state space involving many vehicles and tasks,
which results in a longer convergence time to obtain optimal
offloading decisions [32]. By taking full advantage of the
intelligence of individual vehicles, game theory is a powerful
framework to analyze the intersections among vehicles that
act in their own interests with low complexity [39]. Under the
game theory-based framework, vehicles can self-learn the best
offloading decisions and self-organize into a Nash Equilibrium
state [22]. In such a state, no vehicle is willing to change
its offloading decision. Thus, we believe that a game theory-
based method can ease the burden of leveraging a complex
centralized computation offloading method and reduce the
controlling and signaling overhead between RSU and vehicles.

A. Game Formulation

According to formula (16), each vehicle tries to minimize
its joint cost Uy, (Xn,X—n)- We consider the computation

5917

offloading problem within an offloading period. The distrib-
uted computation offloading game is formulated as

G= <Na-’47u>a (17)

which consists of three parts:

o N is the set of players (i.e., vehicles);

o A= {A,}.cn is the set of decision space of all players,
where A, = {0,1} denotes the set of actions player n
can take;

e U = {Ui(x1,x-1), U2(x2:X—2), -, Un (XN, X—n) }
is the set of joint cost of all players, where Uy, (Xn, X_,,)
denotes the joint cost of vehicle n, as defined in
formula (15).

Each player adjust its decision based on formula (15) to
minimize its joint cost. For example, for two possible decisions
Xn and ¥, of player n, if Un(Xn,X_rn) < Un(Xn:X_pn)
which means decision Y, is more profitable than X,, for player
n, then player n would independently and selfishly choose
decision y,, to reduce its joint cost. Otherwise, Y, would be
a prefer of player n. Due to the independence of players in
making offloading decisions, we call the formulated game G as
the distributed computation offloading game. In the following,
we introduce Nash Equilibrium [20], a very important concept
in game theory.

Definition 1 (Nash Equilibrium): For game G, we call
X" = (X}, X5, -, XN) a Nash Equilibrium if and only if no
vehicle can further improve its profit by unilaterally changing
its decision at the equilibrium x*, i.e.,

Un(Xf”an) < Un(Xthn)a Vxn € An,Yn e N.  (18)

The Nash Equilibrium has a very important property,
i.e., the self-stability property that when at the equilibrium x*,
each player obtains its best decision and would not change it.
To reach such an equilibrium state, we now need to prove the
existence of Nash Equilibrium.

B. Existence of Nash Equilibrium of G

To prove the existence of Nash Equilibrium of G, we first
introduce best response [20].

Definition 2 (Best Response): Given  the  computation
offloading decisions x_,, if the computation offloading
decision x;, € A, meets:

U"(Xi:w X—n) < UH(XYH X—n)a \V,Xn S -ATM (19)

we call x;, a best response.

After observing formulas (18) and (19), it is obvious that
all vehicles make their best response decisions at the Nash
Equilibrium x*. In the following, we introduce how to make
the best response.

Lemma 1: Given the computation offloading decisions x _,,
of other vehicles, vehicle n makes its best response according
to the following formula:

]-a ZZEN\{TI} Xi < Fn - ]-a

Xn = (20)
0, otherwise,

Authorized licensed use limited to: SOUTHWEST JIAOTONG UNIVERSITY. Downloaded on September 18,2021 at 01:48:58 UTC from IEEE Xplore. Restrictions apply.



5918

where T',, is expressed as

)\17551 + )\QQEfl -9,

I'n = —XD.75epD, D)’ (21)
LBlog,(1+ P?g(‘jh‘;ﬁ) Mfe
and V,, is expressed as
U, = Xa(0E; (x) + £Dn + 7Dy Ch). (22)

Proof: According to formula (15), the joint cost can be
reformulated as

Un(X/n/) X—TL)
= (L= xn)(A1 th, + X2 OF)
+xn(M 277 (x) + X2 0277 (x))

=(1—=xn) ()\1 tﬁl + AggEé)

Dy DnCndienXi
+ Xn <>\1 (Tn(x) Mfe )
0Py Dy, .
* A2< o) TR0 +EDn + anCn)>. (23)

If the best response decision of vehicle n is x;, = 1, according
to Definition 2, we have

Un(17 X—n) < Un(07 X—n)' (24’)
Combining formulas (23) and (24), we have
DT Dncn i i
e 2ien X )
7 (X) M fe
P, D,
2 (255 4 0BL(X) + €D0 +9D.C )
7 (X)
< Mith 4 AooE!,. (25)
That is,
1
W(AIDH + )\QQPnDn)

< Mth 4+ M20E), — X2 (0EL(X) + £Dn + 7¥DuCh)
)\ID C Zzej\[ Xz
M fe
For the sake of simplicity, we use ¥ to replace A2 (0FE%S(x) +

¢D,, + vD,C},), and let’s substitute formula (4) into for-
mula (26), we have

Zie]\/ Xi

P, |h|2
LBlog,(1 + £ (‘1”'),0

(26)

>\1D C ZzeNXz

v — M e

< \ith + NpoE! —

27)

That is,

> il

iEN

MDy, + XooP, Dy,

2
LBlogy(1+ Z21)

AanCn
M fe

< Mith 4+ XgoFE! — 0.

)

(28)

Then we have

ZX%’<Fné

iEN

)qtil + )\QQEfz - v
A1 Dy +X20P, Dy, + )\ancn).

P |n|2 Mfe
LBlogy (1415 !

(29)

IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 20, NO. 9, SEPTEMBER 2021

That is,

Z Xi<Fn_

(30)

|

Now, we need to prove that the formulated game G has a

Nash Equilibrium, and thus eventually converges after each

vehicle makes the best response decision iteratively. To this
end, we resort to the concept of potential game [21].

Definition 3 (Potential Game): A game is called a potential

game if there exists a function P : x = (x1,X2,---,Xn) — R
such that ¥n € N, Vx_,, € W;znAi, YXn, X € An,

Un(X{rmxfn) = P(Xnvxfn)_P(X{rmxfn)
(31)

U’ﬂ(Xna an)_

Function P is a potential for the potential game.

Since the potential game has the finite improvement property
(FIP) that any better response updating process must be finite
and lead to a Nash Equilibrium [21], [27], we now only need
to prove that our formulated game G is a potential game.

Theorem 1: Our formulated distributed computation
offloading game G = (N, A,U) is a potential game with a
potential function and hence always has the FIP and a Nash
Equilibrium.

Proof: According to formulas (15) and (23), we reformu-
late Uy (Xn, X_,) S

W, if xn =0,

32
ngf(s), if xn =1, G2

U’ﬂ(Xnv an) = {

where
erl =\ tiz =+ AQQE,L,

D DnCn Z Xi
of f — n ieEN
Walls) = X <rn(x) M fe )

P.D,
W ( ¢ 4 0E%(x) + £Dn + anCn)

n(X)
. )\an + AQQPnDn AlDHCH Eie]\f Xi
= Mfe

Tn(X)
= ZieN X (/\an + )\QQPnDn)

2
LBlogy(1 + 3 tiy)

M DG Zie/\f Xi
M fe
= sQ, + ¥,

(33)

+\Iln

+ ¥,
(34)

where s = Zie A X Q,, and ¥, are two replacement
variables to replace some parameters in formula (34) for the
sake of simplicity, and €2,, is formulated as

Q, = MDDy, + AQanhD;’L + AlDTLCYL7 (35)
LBlogy(1+ z2tlsy — Mfe
and ¥, is as shown in formula (22).
Now we define a function P : x = (X1,X2,---,XN) —
R as
N
P(Xn; X Z W (0) + WL Iia—0y,  (36)

i=1

Authorized licensed use limited to: SOUTHWEST JIAOTONG UNIVERSITY. Downloaded on September 18,2021 at 01:48:58 UTC from IEEE Xplore. Restrictions apply.



LUO et al.: SELF-LEARNING BASED COMPUTATION OFFLOADING FOR I0V: MODEL AND ALGORITHM

TR TR

where I3 = 1 when is true and I;.; = 0 when 7 is

false. We suppose an arbitrary vehicle n (n € N') changes its

decision from x,, to x/,. Since xn, x,, € {0, 1}, there are two

cases considered: /) x,, = 0 and x}, = 15 2) x,, = 1 and

X, = 0. We will elaborate on the two cases in the following.
1) Xn = 0 and x!, = 1: In this case, we have

= ity + Ao0E, = W,

Un(XnaX—n) (37)

and

Un(Xos X—n) = (s + D) + T, = Wl (s + 1), (38)

According to formula (36), the defined function P can be
expressed as

P(Xn, X Z Woff )+ Wl T WTIL Z I{aho i#n}s
1=1
(39)
and
s+1 N
P(xp, X Z Wl () + WY Tia—0,izn}-  (40)
i=1
Then,
Un(Xna X—n) - U"(X;w an) = erz - stf(s + 1)7 (41)
and
P(Xn;X )_P(X;zaxfn)
s+1
= ZW"” +WE=S W (v)
v=1
= WfL Wl (s +1). (42)
Accordingly,
Un(Xm X—n) - U"(X/na X—n) = P(Xm X—n) - P(X/na X—n)
(43)
2) xn = 1 and x!, = 0: In this case, we have
Un(Xns X—p) = () + U, = W (s), (44)
and
Un(Xn: X—n) = Mty + Aa0By = W, (45)

According to formula (36), the defined function P can be
expressed as

N
+ W'rlz Z I{aizo,iyﬁn}a (46)

= W)

P(Xn>X—n)
v=1 1=1
and
s—1 N
P(X{m an) = Z szf(v) + erz + erl Zl{aizo,iyﬁn}-
v=1 =1
47)
Then,
Un(Xna X—n) - Un(X;w an) = Wr?ff(s) - erw (48)

5919
and
P(Xan—n) - P(Xiwx L)
:Zwoff Zwoff )+ W)
v=
- ngf<s> — W (49)
Accordingly,
Un(Xns X—n) = Un(Xrs X)) = P(Xns X ) = P(X00s X—1)-
(50)
[ |

Theorem 1 and the above derivation proves that G is a
potential game such that the existence of Nash Equilibrium
is guaranteed. And based on the FIP of G, we design a self-
learning based distributed computation offloading (DISCO)
algorithm to reach the Nash Equilibrium in the following.

V. SELF-LEARNING BASED DISTRIBUTED
COMPUTATION OFFLOADING

The key idea of the self-learning based distributed compu-
tation offloading (DISCO) algorithm is making full use of the
FIP of G. In view of this, a finite number of offloading decision
updating iterations can achieve a plateau status. Moreover,
to make the best response decision, a vehicle needs to know the
computation offloading decisions of other vehicles according
to Lemma 1 and formula (20). To this end, we utilize a
message exchange protocol [27]-[30], where vehicles that
have the best response decisions compete for the decision
updating opportunity in a distributed manner and only one
decision is made at a time. More specifically, the best response
updating set of vehicle n is first calculated out according to
Lemma 1 and formula (20) as

T" é {Xn : (Xn?X—n) < Un(X’ﬂvX—n)}
1}, if xn, = 0 and s <Tn—1,

{1}, i x an ZiEN\{n}X
= {O}a >Fn_ 1;

if x, =1 and Zie./\/'\{n} Xi =
<,  otherwise.

(51

Then, according to the set of best response updating Y,
vehicle n decides weather to compete for the decision updating
opportunity. That is,

o if T,, # @, vehicle n will compete for the decision

updating opportunity;

o otherwise, vehicle n will not compete. Instead, it will

keep the current decision unchanged.

To address the potential collisions if multiple vehicles
compete for the decision updating opportunity simultane-
ously, we adopt a random backoff-based mechanism [40].
Specifically, we set the time duration of decision updating
competition as 7. Each competing vehicle initializes a timer
with a backoff time duration o¢,, that obeys a uniform distri-
bution on the interval [0,7] and countdowns the timer. If a
competing vehicle has not received any request-to-updating
(RTU) message from other vehicles yet when the timer expires,

Authorized licensed use limited to: SOUTHWEST JIAOTONG UNIVERSITY. Downloaded on September 18,2021 at 01:48:58 UTC from IEEE Xplore. Restrictions apply.



5920

the vehicle will update its decision as defined in formula (51)
and broadcast an RTU message to all other vehicles. If other
competing vehicles receive the RTU message, they will give
up the updating opportunity and keep their current decisions.
It is worth noting that each RTU message includes the ID
of the vehicle and its decision. The broadcasting of RTU
message can be easily achieved by the control channel of
LTE-V communication protocol. And each vehicle keeps a
record memory M to record decisions of other vehicles based
on the received RTU message.

Algorithm 1 Self-Learning Based Distributed Computation
Offloading (DISCO) Algorithm
1: Initialization

2: Initialize the decision of each vehicle as x,, =0

3: Initialize record memory of each vehicle as M,, = {0,...}
4: Calculate the initial value of joint cost U,, of each vehicle
5: End Initialization

6: Begin

7: for iteration k = 1,2,3,.. .

8: for each vehicle n in parallel:

9: do:

10: Obtain decision profile x based on M,

11: Calculate T, according to formula (51)

12: if T,, # @ then

13: Compete for the decision updating opportunity
14: if win the competition opportunity then

15: Choose the decision in T,

16: Broadcast the RTU message

17: else

18: Keep x, unchanged

19: end if

20: else

21: Keep x, unchanged at the next iteration

22: end if

23: until no RTU message is broadcasted

24:  end for

25: end for

26: for each vehicle n in parallel:

27 Execute the computation offloading decision Y, obtained
at the last iteration

28: end for

29: End

According to the FIP, after a finite number of iterations,
the formulated game G would converge to a Nash Equilibrium.
At the Nash Equilibrium point, no vehicle would change
its decision thus no RTU message would be broadcasted.
In view of this, we judge that the iterations can terminate
if no RTU message is broadcasted. Algorithm 1 presents the
detailed DISCO algorithm consisting of Self-Learning Stage
and Executing Stage. At the Self-Learning Stage, as shown in
Lines 1-25 of Algorithm 1, each vehicle learns from its indi-
vidual information and the decision profile of other vehicles
to make the best response decision through broadcasting RTU
message. At the Executing Stage, as shown in Lines 26-28 of

IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 20, NO. 9, SEPTEMBER 2021

Algorithm 1, each vehicle executes its best response decision
learned at the Self-Learning Stage.

It is obvious that the Self-Learning Stage impacts the effi-
ciency of the proposed DISCO algorithm the most. For each
iteration, only basic arithmetical calculations will be executed
by N vehicle as shown in in Lines 10-22 of Algorithm 1.
Accordingly, the computational complexity for each iteration
is O(N). Since the iteration will terminate after a finite num-
ber of iterations according to the FIP of game G, let K denote
the number of iterations for DISCO to converge. Accordingly,
O(KN) is the total computational complexity of DISCO.
Since the computational time is very short, generally several
microseconds, this part of time can be ignored. Accordingly,
the time length of each iteration during the Self-Learning
Stage is mainly depending on the time duration of decision
updating competition and the RTU message broadcasting time.
For the time duration of decision updating competition, since
T can be very short, generally several milliseconds, we set
7 = 10 ms in our paper. For the RTU message broadcasting
time, since it depends on the size of RTU message and such
RTU message that only containing the user’s ID and decision
is very small, generally several milliseconds [41]. Accordingly,
the proposed DISCO algorithm has a fast convergence, which
will be verified in the following.

It is noting that vehicles may enter and leave the coverage
of the RSU during self-learning and task offloading, leading
to a failed result reception from RSU. To address this issue,
we can first adopt a duration prediction method to evaluate the
link duration between vehicles and RSU based on the current
position and speed of vehicles, and the position of RSU. Then,
a threshold duration is set, guaranteeing the task processing
result can be returned before the vehicle leaves the coverage
of the RSU. Only the vehicles whose predicted link duration
is longer than the threshold duration can participate in the
gaming and task offloading process. Another way is utilizing
the cooperation between adjacent RSUs. The remaining task
data can be offloaded to the next RSU if the vehicle leaves the
coverage of the current RSU during task offloading, or can be
migrated from the current RSU to the next RSU if the vehicle
leaves the coverage of the current RSU during task processing.
For simplicity, in this paper, we assume that all vehicles with
offloading tasks are still in the coverage range of the current
RSU during the period from the beginning of self-learning
process to the time when results are received.

VI. SIMULATION RESULTS AND DISCUSSIONS

In this section, we conduct simulations to validate the per-
formance of the proposed DISCO algorithm. We first describe
the simulation setup and then discuss the simulation results.

A. Simulation Setup

We consider a two-way two-lane scenario. The length and
width of each lane are 1000 m and 4 m, respectively. And one
RSU is deployed in the middle of roadside, with coordinate
(0, 0). The trajectory of vehicles is randomly chosen from
GAIA Open Dataset of DiDi Express [42]. The coverage
radius of RSU and vehicles are set to 500 m and 250 m,

Authorized licensed use limited to: SOUTHWEST JIAOTONG UNIVERSITY. Downloaded on September 18,2021 at 01:48:58 UTC from IEEE Xplore. Restrictions apply.



LUO et al.: SELF-LEARNING BASED COMPUTATION OFFLOADING FOR I0V: MODEL AND ALGORITHM

TABLE 11
PARAMETERS SETTING ABOUT VEHICLES AND RSU

Description Value
Bandwidth per channel (B) 0.5 MHz
Processing density of data (C,) 100

Data size of T,, (D,,) 1 ~ 10 Mbit

Processing capability of each core (f€) 1 x 107

Processing capability of vehicle (f7) 1.4 x 108
Switched capacitance coefficient (k,,, ko) | 10723, 10=%°

Number of V2I channels (L) 10 ~ 50

Number of processing cores of RSU (M) 64

Number of vehicles (V) 10 ~ 60
Transmission power of vehicles (P,) 30 dBm
Coverage radius of vehicles 250 m
Coverage radius of RSU 500 m
White Gaussian noise power (wq) —100 dBm

Path loss exponent (1) 4

Energy consumption cost coefficient (o) 2.44 x 1074
V2I cost coefficient (£) 1.16 x 10T
Cost for RSU processing data () 3x 1077
Weighting parameter of latency (A1) 0~1
Weighting parameter of cost (A2) 0~1
Maximal backoff time duration (7) 10 ms

respectively. The data size is randomly distributed between
1 and 10 Mbit. The detailed parameters setting about vehicles
and RSU is shown in Table II. We use a GPU-based server
with 4 NVIDIA GTX2080 Ti GPUs, where the CPU is Intel
Xeno(R) E5-2690v4 with 64 G memory. Software environment
we utilize is Python 3.7 on Ubuntul6.04.6 LTS.

B. Simulation Results

We consider the following schemes as benchmarks to
evaluate our proposed DISCO:

o Offload-Comp-Only (OCO), where all vehicles offload
their computation tasks to RSU to be processed;

o Local-Comp-Only (LCO), where all vehicles compute
their computation tasks locally.

e Random-Offload (RO), where each vehicle choose
decision 1 or 0 randomly.

o JROPSO, which is a centralized computational offloading
decision algorithm based on particle swarm optimization
(PSO) [43].

1) Effectiveness: We first evaluate the timeliness and effec-
tiveness of the proposed DISCO algorithm. In this set of
simulations, we set N = 40, L = 30, \y = Ay = 0.5,
D,, obeys an uniform distribution on interval [1, 10] Mbit.
Fig. 2 shows the changes in the system-wide joint cost
(e, > pen Un(Xn;X_y)) obtained by iterations under dif-
ferent schemes. The figure indicates that the system-wide
joint cost of DISCO tends to be optimal and stable in about
50 iterations. As analyzed in Section V, since the time length
of each iteration is very short (generally in the unit of mil-
lisecond), the convergence time of the proposed DISCO is also
very short. Accordingly, the proposed DISCO algorithm has

5921

72
70 |
\

68 -

System joint cost

64 [

62 1 1 1 1 1 1 1 1 1
0 25 50 75 100 125 150 175 200

Iterations

Fig. 2. System-wide joint cost achieved during iterations.

150
B JROPSO
DISCO
R Lco
i oco
E=Ro

4

DASNNANNRNNNNNRNNNNNNNNNNNNNNNNY

)

KRN

XX

o
o
T

XXX

XX

XX
KR

XX

XX

R

~
a
T

4

ENSONNNNNNNNNNNNNRNY

R

<)

XXXA

XX

X

S SSSSASSASSSASSSASSSISY
s

X

X

XX

KX

XX

System joint cost

o

S
T
X

4

)

X

X

>

KA
X

X%
%

XX

X

<

XX
K

X

XX
ODRRR

00

XK
XX

25

XX

X
KX

X

X

X%
e
XX

KX

K>
KXY

KX

X

%l

2 4 6
Average data size (Mbit)

Fig. 3. System joint cost under different average data size.

a fast convergence. Moreover, the system joint cost of DISCO
is lower than both LCO and OCO schemes. This is because
the vehicles in our proposed DISCO continue to learn the
best response decision to minimize their joint costs. However,
a high joint cost will be produced if the task with big data
size is computed locally by the LCO scheme or if the task
with small data size is offloaded to RSU to be processed by
the OCO scheme. Besides, the system joint cost of the RO
scheme fluctuates dramatically over iterations and higher than
that of the proposed DISCO algorithm.

2) System Joint Cost: Fig. 3 shows the relationship between
system joint cost and average data size when we set N = 40,
L = 30, and \y = Ay = 0.5. It can be seen that the
system joint costs of all schemes increase with the increasing
of average data size. Because a larger data size requires
more communication (if offloaded) and computing costs. The
proposed DISCO outperforms LCO, OCO and RO, and can
reduce up to 14%, 23% and 18% system joint cost over the
three schemes, respectively. Compared with the centralized
JROPSO, the performance loss of DISCO is less than 7%.
Moreover, the performance of OCO is worse than LCO when
average data size is small and becoming better than LCO when
average data size is getting bigger. This is because when data
size is small, computing time cost of local computing will be
smaller compared with the cost of RSU computing. And when
data size is big, severe computing time will be caused by local

Authorized licensed use limited to: SOUTHWEST JIAOTONG UNIVERSITY. Downloaded on September 18,2021 at 01:48:58 UTC from IEEE Xplore. Restrictions apply.



5922 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 20, NO. 9, SEPTEMBER 2021

TABLE IIT
THE NUMBER OF VEHICLES CHOOSING DECISION 0 OR 1 WITH DIFFERENT AVERAGE DATA SIZE OF DISCO

Average data size (Mbit)

2146|810

Number of vehicles choosing decision 0 | 30 | 24 | 11 | 7 4

Number of vehicles choosing decision 1 | 10 | 16 | 29 | 33 | 36

8x10°

.| B JrOPSO
™o 77 pbisco
6x10° |- SLco
* EEE oco
@ sx10° Ero
£
& ax10°f
o
ey -y
2 30° - :0:’
Q (7
s 5
~ ek = &l X
% K 5
. % & %19
1x10° - & % 514
b b X
o K g
0 %] Rl gl
2 4 6 8 10
Average data size (Mbit)
(a) Latency cost
20
B2 JROPSO
I ZZbisco
el RLco
B oco
14 E=SRO
S 12F
k7
g 10
3
D sl
2 V)
[ = K]
K
P‘i
2| iﬁa
g B
0 4

Average data size (Mbit)
(b) Energy cost

Fig. 4. Latency cost and energy cost under different average data size.

computing thus results in a higher joint cost compared with
RSU computing. To verify this point, we further show how
the number of vehicles choosing decision 0 and 1 changes
under different average data size of our proposed DISCO.
As shown in Table III, the number of vehicles choosing
decision 1 increases while the number of vehicles choosing
decision O decreases as the average data size increases.

Since the system joint cost is a weighted system cost, it is
hard to understand the cost of each component. To provide a
more straightforward understanding, we present in Fig. 4 the
real value of latency and energy cost of Fig. 3. For the latency
cost, as shown in Fig. 4(a), the LCO has the worst performance
since the limited local computation capacity causing long
computing time. For the latency cost, as shown in Fig. 4(b),
the LCO also has the worst performance since long latency
causing more energy corruption.

Fig. 5 shows how communication resource (i.e., the number
of channels L) impacts the system joint cost when we set

BER JROPSO
DISCO
R Lco
HEE 0CO
=|J¢

95 -

920

85 -

3

<]

RRRR

X

System joint cost

<)

X

x>
%

X>

XX

0

XXXX,

XXX

XHXHXXX

XXX

>

X

XX

XXX

X

%29
XX

10 20 30 40 50
Number of channels

Fig. 5. System joint cost under different number of channels.

125

B JROPSO
DISCO _
100 R LCO
fE oco
=

75

XX

KX

XX

XXX

50

XXX

System joint cost

XXXXX

o

X

o

X

3
X>
XX

3

25

RIKKA

XXX

X

x>
XXX

%
5
XX

>

XXX KIKK KKK KKK KK IKKKKKK]

2038
XX

<

KX

K>

20 30 40 50
Number of vehicles

Fig. 6. System joint cost under different number of vehicles.

N = 40, Ay = X = 0.5, and D,, obeys an uniform
distribution on interval [1, 10] Mbit. The system joint costs
of all schemes except LCO decrease with the increasing L.
Because more communication resources will be obtained for
vehicles choosing decision 1 if L increases, thus transmission
time cost is reduced. The proposed DISCO outperforms LCO,
OCO, and RO, which can reduce up to 13%, 10%, and 12%
system joint cost over the three schemes, respectively, with
less than 3% performance loss compared with JROPSO.

Fig. 6 shows how the number of vehicles impacts the
system joint cost when we set L = 30, Ay = Ao = 0.5,
and D, obeys an uniform distribution on interval [1, 10]
Mbit. It shows the system joint costs of all schemes increase
with the increasing number of vehicles. The proposed DISCO
outperforms LCO, OCO, and RO, which can reduce up to
29%, 5%, and 23% system joint cost over the three schemes,
respectively, with less than 12% performance loss compared

Authorized licensed use limited to: SOUTHWEST JIAOTONG UNIVERSITY. Downloaded on September 18,2021 at 01:48:58 UTC from IEEE Xplore. Restrictions apply.



LUO et al.: SELF-LEARNING BASED COMPUTATION OFFLOADING FOR I0V: MODEL AND ALGORITHM

10+ —
&5 DISCO =
8 = JROPSO =
z | g5 =
3 = E E
o 6f = E =
< = = =
o = = =
3 4t = = =
[0} = = H
£ = = =
Eo2p = =2 E
0 N A favall WE ng @g
10 20 30 40 50 60
Number of vehicles
(a) Time overhead
600 &= DISCO =
£ JROPSO =
» 500+ ] =
[0 — —
()] = —
B 400} = = =
[%2] = — —
4] = = =
E 300} = =2 B
5] = = =
2 200t = =5 E
IS = = =
=} = — —
Z 100} = = =
0 an XX @n @E @g %g
0 0

10 20 30 40
Number of vehicles

(63
2]

(b) Message overhead

Fig. 7. Time overhead and message overhead.

with JROPSO. Moreover, the performance gap between
DISCO and OCO is increasing with the number of vehicles.
Because the average communication resource each vehicle can
obtain is getting smaller if the number of vehicles increases
for the OCO scheme, thus severe transmission time cost will
be produced. The vehicles in our proposed DISCO can choose
decision O or 1 intelligently towards a minimum joint cost.

3) Overhead: We evaluate the overhead performance
between DISCO and JROPSO on two aspects, i.e., the algo-
rithm execution time overhead (hereinafter referred to as time
overhead for short) and controlling and signaling overhead
(i.e., the number of messages exchanged among vehicles and
between vehicles and RSU, hereinafter referred to as message
overhead for short).

Fig. 7(a) shows the time overhead comparison when we
set L = 30, Ay = Ao = 0.5, and D,, obeys an uniform
distribution on interval [1, 10] Mbit. It demonstrates that
the time overhead of DISCO is much lower than that of
JROPSO. The order-of-magnitude of DISCO’s time overhead
is in milliseconds while the order-of-magnitude of JROPSO’s
time overhead is in seconds. Accordingly, DISCO can achieve
an order-of-magnitude improvement on time overhead over
JROPSO. The reasons are twofold. The first one is that
massive information from all vehicles needs to be collected,
processed and calculated to obtain a global optimal offloading
scheme by continuous iterations for JROPSO. For DISCO,

5923

40

7 7] decision 0
s &K decision 1 =
o
o
or ke
7 (53
XX
:
o 5f &
5 XX
E KX
: 3%
5% 5
o KX
5
g 5
XX
R o
5 ol
2 (53
‘ 5
10 | &3
5
5
5]
° 5
i 1XX]
%%
3934
R b
0 1 I 1K

0.0 0.2 0.6 0.8 1.0
Weighting parameter of latency

Fig. 8. Offloading choices under different A1 and As.

each vehicle only needs the decision profile of other vehicles
and calculates its best response decision in a distributed
and parallel way, which reduces the time overhead. Most
importantly, the JROPSO algorithm itself, as a centralized
algorithm, has a higher computational complexity as many
centralized heuristic algorithm do. As analyzed in Section V,
only basic arithmetical calculations will be executed by N
vehicles for each iteration, the computational complexity is
very low. However, for JROPSO algorithm, massive calcu-
lations will be executed in each iteration since the number
of particles and the scale of the problem jointly determine
the computational complexity. And more iterations are needed
for JROPSO algorithm to converge, leading to a much longer
convergence time.

Fig. 7(b) shows message overhead comparison when we set
L =30, \; = A2 = 0.5, and D,, obeys an uniform distribution
on interval [1, 10] Mbit. It can be seen that the message
overhead of DISCO is much lower than that of JROPSO.
Specifically, DISCO can reduce message overhead by at least
88% over JROPSO under different numbers of vehicles. The
reason is that for DISCO, message overhead is produced
only when a vehicle successfully wins the decision updating
opportunity and updates its offloading decision. While for
JROPSO, all information of each vehicle is needed to send
to RSU, including the task data size, the processing density
of data, the local processing density, the transmission power,
the position, and many other parameters. There is another main
concern for JROPSO that some vehicles may be unwilling to
send their information due to privacy concerns and hence are
unwilling to participate in the centralized optimal offloading
algorithm. And our proposed DISCO has the advantage of not
having to consider the privacy issue. Because each vehicle can
make the best response decision locally without exposing its
local parameters.

4) Weighting Parameters A1 and \o: Fig. 8 shows how
different A\; and Ao impact vehicles’ offloading decisions.
In this set of simulation, we set N = 40, L = 30, \; €
[0,1] A2 € [0,1], and A\ + A2 = 1. More vehicles tend
to choose local computing when the weighting parameter of
latency A; is small. In this case, we emphasize more on a
lower cost. Offloading tasks to the RSU would produce more
costs by using communication and computation resources.

Authorized licensed use limited to: SOUTHWEST JIAOTONG UNIVERSITY. Downloaded on September 18,2021 at 01:48:58 UTC from IEEE Xplore. Restrictions apply.



5924

75

f

60 -

i/
o
T

0 1 1 1 1 1 1
10 20 30 40 50 60

Number of vehicles

Number of iterations

Fig. 9. Number of iterations.

Since our proposed DISCO tries to minimize the joint cost,
more vehicles gradually learn that they should choose a deci-
sion 0. When the weighting of latency \; is becoming bigger
(i.e., IoV applications seek a lower latency rather than cost),
more vehicles tend to offload their tasks to the RSU. In this
case, the powerful computing capacity of RSU can reduce the
computing time if a decision 1 is chosen. More vehicles would
gradually choose to offload their tasks to RSU for minimizing
the joint cost by our proposed DISCO.

5) Convergence Under Different Number of Vehicles: Fig. 9
shows the average number of iterations for DISCO to converge
to a Nash Equilibrium. As shown, the average number of
iterations increases linearly with the number of vehicles,
which indicates that our proposed DISCO scales well with the
number of vehicles. This is another advantage of DISCO over
the centralized offloading algorithms whose computational
complexities usually increase exponentially with the number
of vehicles.

VII. CONCLUSION

In this paper, we have investigated the computation offload-
ing problem and proposed a self-learning based distributed
computation offloading scheme for IoV. Specifically, we first
established an offloading framework with communication and
computation for IoV. Then we formulated a distributed com-
putation offloading game, where each vehicle as a player
makes an offloading decision to minimize its own joint
cost. We proved that our formulated distributed computation
offloading game admits a Nash Equilibrium. To get to the
Nash Equilibrium of the formulated game, we designed a self-
learning based distributed computation offloading (DISCO)
algorithm. Since no control center is required, DISCO is a
very practical algorithm. Finally, we used real-world vehicular
traces to implement extensive simulations, which verified the
performance of DISCO. Our proposed DISCO scheme can
achieve at least an order-of-magnitude improvement on time
overhead and 88% performance gain on message overhead,
only at up to 12% performance loss on system joint cost,
compared with the centralized scheme.

In the future, we will consider continuous tasks and utilize
the dynamic game to analyze the offloading decision-making
problem for a more practical Internet of vehicle scenario.

IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 20, NO. 9, SEPTEMBER 2021

Also, we should consider the benefits obtained by service
providers thus contract-based method should be combined
with a game theory-based method. The mobility of vehicles
and the handover between different RSUs should be also
considered.

REFERENCES

[1] Y. Dai, D. Xu, S. Maharjan, G. Qiao, and Y. Zhang, “Artificial intelli-
gence empowered edge computing and caching for Internet of Vehicles,”
IEEE Wireless Commun., vol. 26, no. 3, pp. 12—-18, Jun. 2019.

[2] H.Zhou, W. Xu, J. Chen, and W. Wang, “Evolutionary V2X technologies
toward the Internet of Vehicles: Challenges and opportunities,” Proc.
IEEE, vol. 108, no. 2, pp. 308-323, Feb. 2020.

[3] S. Sharma and B. Kaushik, “A survey on Internet of Vehicles: Applica-
tions, security issues & solutions,” Veh. Commun., vol. 20, Dec. 2019,
Art. no. 100182.

[4] N. Lu, N. Cheng, N. Zhang, X. Shen, and J. W. Mark, “Connected
vehicles: Solutions and challenges,” IEEE Internet Things J., vol. 1,
no. 4, pp. 289-299, Aug. 2014.

[5] L. Lin, X. Liao, H. Jin, and P. Li, “Computation offloading toward edge
computing,” Proc. IEEE, vol. 107, no. 8, pp. 1584-1607, Aug. 2019.

[6] J. E. Siegel, D. C. Erb, and S. E. Sarma, “A survey of the connected
vehicle Landscape—Architectures, enabling technologies, applications,
and development areas,” IEEE Trans. Intell. Transp. Syst., vol. 19, no. 8,
pp. 2391-2406, Aug. 2018.

[7]1 P. Mach and Z. Becvar, “Mobile edge computing: A survey on architec-
ture and computation offloading,” IEEE Commun. Surveys Tuts., vol. 19,
no. 3, pp. 1628-1656, 3rd Quart., 2017.

[8]1 Y. Dai, D. Xu, S. Maharjan, and Y. Zhang, “Joint load balancing and
offloading in vehicular edge computing and networks,” IEEE Internet
Things J., vol. 6, no. 3, pp. 4377-4387, Jun. 2019.

[9]1 K. Zhang, Y. Mao, S. Leng, Y. He, and Y. Zhang, “Mobile-edge

computing for vehicular networks: A promising network paradigm

with predictive off-loading,” IEEE Veh. Technol. Mag., vol. 12, no. 2,

pp. 3644, Jun. 2017.

S. Wang et al., “When edge meets learning: Adaptive control for

resource-constrained distributed machine learning,” in Proc. IEEE Conf.

Comput. Commun. (INFOCOM), Apr. 2018, pp. 63-71.

Z. Zhou, X. Chen, E. Li, L. Zeng, K. Luo, and J. Zhang, “Edge

intelligence: Paving the last mile of artificial intelligence with edge

computing,” Proc. IEEE, vol. 107, no. 8, pp. 1738-1762, Aug. 2019.

J. Zhang and K. B. Letaief, “Mobile edge intelligence and computing

for the Internet of Vehicles,” Proc. IEEE, vol. 108, no. 2, pp. 246-261,

Feb. 2020.

K. Zhang, Y. Mao, S. Leng, A. Vinel, and Y. Zhang, “Delay constrained

offloading for mobile edge computing in cloud-enabled vehicular net-

works,” in Proc. 8th Int. Workshop Resilient Netw. Design Modeling

(RNDM), Sep. 2016, pp. 288-294.

J. Du, F. R. Yu, X. Chu, J. Feng, and G. Lu, “Computation offloading

and resource allocation in vehicular networks based on dual-side cost

minimization,” IEEE Trans. Veh. Technol., vol. 68, no. 2, pp. 1079-1092,

Feb. 2019.

C. Wang, C. Liang, F. R. Yu, Q. Chen, and L. Tang, “Computation

offloading and resource allocation in wireless cellular networks with

mobile edge computing,” IEEE Trans. Wireless Commun., vol. 16, no. 8,

pp. 49244938, Aug. 2017.

K. Zhang, Y. Mao, S. Leng, S. Maharjan, and Y. Zhang, “Optimal delay

constrained offloading for vehicular edge computing networks,” in Proc.

IEEE Int. Conf. Commun. (ICC), May 2017, pp. 1-6.

K. Zhang, S. Leng, X. Peng, L. Pan, S. Maharjan, and Y. Zhang,

“Artificial intelligence inspired transmission scheduling in cognitive

vehicular communications and networks,” IEEE Internet Things J.,

vol. 6, no. 2, pp. 1987-1997, Apr. 2019.

Q. Luo, C. Li, T. H. Luan, and W. Shi, “Collaborative data scheduling

for vehicular edge computing via deep reinforcement learning,” /EEE

Internet Things J., vol. 7, no. 10, pp. 9637-9650, Oct. 2020.

Y. Sun et al., “Adaptive learning-based task offloading for vehicular

edge computing systems,” [EEE Trans. Veh. Technol., vol. 68, no. 4,

pp. 3061-3074, Apr. 2019.

M. J. Osborne and A. Rubinstein, A Course in Game Theory. Cambridge,

MA, USA: MIT Press, 1994.

D. Monderer and L. S. Shapley, “Potential games,” Games Econ. Behav.,

vol. 14, no. 1, pp. 124-143, 1996.

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

Authorized licensed use limited to: SOUTHWEST JIAOTONG UNIVERSITY. Downloaded on September 18,2021 at 01:48:58 UTC from IEEE Xplore. Restrictions apply.



LUO et al.: SELF-LEARNING BASED COMPUTATION OFFLOADING FOR I0V: MODEL AND ALGORITHM 5925

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

(30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

(38]

[39]

[40]

[41]

[42]

[43]

J. Li, G. Kendall, and R. John, “Computing Nash equilibria and
evolutionarily stable states of evolutionary games,” IEEE Trans. Evol.
Comput., vol. 20, no. 3, pp. 460—469, Jun. 2016.

X. Huang, K. Xu, C. Lai, Q. Chen, and J. Zhang, “Energy-efficient
offloading decision-making for mobile edge computing in vehicular
networks,” EURASIP J. Wireless Commun. Netw., vol. 2020, no. 1, p. 35,
Dec. 2020.

L. Xiao, X. Lu, T. Xu, X. Wan, W. Ji, and Y. Zhang, “Reinforce-
ment learning-based mobile offloading for edge computing against
jamming and interference,” [EEE Trans. Commun., vol. 68, no. 10,
pp. 6114-6126, Oct. 2020.

J. Zhang, J. Du, Y. Shen, and J. Wang, “Dynamic computation offloading
with energy harvesting devices: A hybrid-decision-based deep rein-
forcement learning approach,” IEEE Internet Things J., vol. 7, no. 10,
pp- 9303-9317, Oct. 2020.

Y. Liu, S. Wang, J. Huang, and F. Yang, “A computation offloading
algorithm based on game theory for vehicular edge networks,” in Proc.
IEEE Int. Conf. Commun. (ICC), May 2018, pp. 1-6.

X. Chen, “Decentralized computation offloading game for mobile
cloud computing,” IEEE Trans. Parallel Distrib. Syst., vol. 26, no. 4,
pp. 974-983, Apr. 2015.

X. Chen, L. Jiao, W. Li, and X. Fu, “Efficient multi-user computation
offloading for mobile-edge cloud computing,” IEEE/ACM Trans. Netw.,
vol. 24, no. 5, pp. 2795-2808, Oct. 2016.

H. Cao and J. Cai, “Distributed multiuser computation offloading for
cloudlet-based mobile cloud computing: A game-theoretic machine
learning approach,” IEEE Trans. Veh. Technol., vol. 67, no. 1,
pp. 752-764, Jan. 2018.

M.-A. Messous, S.-M. Senouci, H. Sedjelmaci, and S. Cherkaoui,
“A game theory based efficient computation offloading in an UAV
network,” IEEE Trans. Veh. Technol., vol. 68, no. 5, pp. 4964-4974,
May 2019.

T. Q. Dinh, Q. D. La, T. Q. Quek, and H. Shin, “Learning for com-
putation offloading in mobile edge computing,” IEEE Trans. Commun.,
vol. 66, no. 12, pp. 6353-6367, Aug. 2018.

Y. Sun, S. Zhou, and Z. Niu, “Distributed task replication
for vehicular edge computing: Performance analysis and learning-
based algorithm,” 2020, arXiv:2002.08833. [Online]. Available: http://
arxiv.org/abs/2002.08833

J. Du, E. Gelenbe, C. Jiang, H. Zhang, and Y. Ren, “Contract design for
traffic offloading and resource allocation in heterogeneous ultra-dense
networks,” IEEE J. Sel. Areas Commun., vol. 35, no. 11, pp. 2457-2467,
Nov. 2017.

Y. Mao, J. Zhang, S. H. Song, and K. B. Letaief, “Power-delay tradeoff
in multi-user mobile-edge computing systems,” in Proc. IEEE Global
Commun. Conf. (GLOBECOM), Dec. 2016, pp. 1-6.

Y. Wang, M. Sheng, X. Wang, L. Wang, and J. Li, “Mobile-edge com-
puting: Partial computation offloading using dynamic voltage scaling,”
IEEE Trans. Commun., vol. 64, no. 10, pp. 4268-4282, Oct. 2016.

H. Guo and J. Liu, “UAV-enhanced intelligent offloading for Internet
of Things at the edge,” IEEE Trans. Ind. Informat., vol. 16, no. 4,
pp- 2737-2746, Apr. 2020.

J. Wallenius, J. S. Dyer, P. C. Fishburn, R. E. Steuer, S. Zionts, and
K. Deb, “Multiple criteria decision making, multiattribute utility theory:
Recent accomplishments and what lies ahead,” Manage. Sci., vol. 54,
no. 7, pp. 1336-1349, Jul. 2008.

Y. Kim, J. Kwak, and S. Chong, “Dual-side optimization for cost-delay
tradeoff in mobile edge computing,” IEEE Trans. Veh. Technol., vol. 67,
no. 2, pp. 1765-1781, Feb. 2018.

M. Felegyhazi and J.-P. Hubaux, “Game theory in wireless networks:
A tutorial,” EPFL, Lausanne, Switzerland, Tech. Rep. LCA-REPORT-
2006-002, 2006.

Q. Zhao, L. Tong, A. Swami, and Y. Chen, “Decentralized cognitive
MAC for opportunistic spectrum access in ad hoc networks: A POMDP
framework,” IEEE J. Sel. Areas Commun., vol. 25, no. 3, pp. 589-600,
Apr. 2007.

Y. Xu, J. Wang, Q. Wu, A. Anpalagan, and Y.-D. Yao, “Opportunistic
spectrum access in unknown dynamic environment: A game-theoretic
stochastic learning solution,” IEEE Trans. Wireless Commun., vol. 11,
no. 4, pp. 1380-1391, Apr. 2012.

Didi. Urban Traffic Time Index and Trajectory Data (New). Accessed:
Oct. 22, 2019. [Online]. Available: https://gaia.didichuxing.com

L. N. T. Huynh, Q.-V. Pham, X.-Q. Pham, T. D. T. Nguyen,
M. D. Hossain, and E.-N. Huh, “Efficient computation offloading in
multi-tier multi-access edge computing systems: A particle swarm
optimization approach,” Appl. Sci., vol. 10, no. 1, p. 203, Dec. 2019.

Quyuan Luo received the Ph.D. degree in com-
munication and information system from Xidian
University, Xi’an, China, in 2020. From 2019 to
2020, he was a Visiting Scholar with the Depart-
ment of Computer Science, Wayne State University,
USA. He is currently an Assistant Professor with
the School of Information Science and Technology,
Southwest Jiaotong University. His current research
interests include intelligent transportation systems,
content distribution, edge computing, and resource
allocation in vehicular networks.

Changle Li (Senior Member, IEEE) received the
Ph.D. degree in communication and information sys-
tem from Xidian University, Xi’an, China, in 2005.
He conducted his postdoctoral research in Canada
and in the National Institute of information and
Communications Technology, Japan. He was a Visit-
ing Scholar with the University of Technology Syd-
ney. He is currently a Professor with the State Key
Laboratory of Integrated Services Networks, Xidian
University. His research interests include intelligent
transportation systems, vehicular networks, mobile
ad hoc networks, and wireless sensor networks.

Tom H. Luan (Senior Member, IEEE) received
the B.E. degree from Xi’an Jiaotong University,
Xi’an, China, in 2004, the M.Phil. degree from the
Hong Kong University of Science and Technology,
Hong Kong, in 2007, and the Ph.D. degree from
the University of Waterloo, Waterloo, ON, Canada,
in 2012. From 2013 to 2017, he was a Lecturer
with the School of Information Technology, Deakin
F University, Burwood, VIC, Australia. He is currently
1‘& a Professor with the School of Cyber Engineering,

. Xidian University. His current research interests
include content distribution in vehicular networks, mobile cloud computing,
and fog computing.

Weisong Shi (Fellow, IEEE) received the B.S.
degree in computer engineering from Xidian Uni-
versity, Xi’an, China, in 1995, and the Ph.D. degree
in computer engineering from the Chinese Acad-
emy of Sciences, Beijing, China, in 2000. He is
currently a Charles H. Gershenson Distinguished
Faculty Fellow and a Professor of Computer Science
with Wayne State University, Detroit, MI, USA. His
current research interests include edge computing,
computer systems, energy-efficiency, and wireless
health. He was a recipient of the National Outstand-
ing Ph.D. Dissertation Award of China and the NSF CAREER Award. He is
an ACM Distinguished Scientist.

Weigang Wu (Member, IEEE) received the B.Sc.
and M.Sc. degrees from Xi’an Jiaotong University,
China, in 1998 and 2003, respectively, and the Ph.D.
degree in computer science from The Hong Kong
Polytechnic University in 2007. He is currently a
Full Professor with the School of Data and Computer
Science, Sun Yat-sen University, China. He has
published more than 60 papers in major conferences
and journals. His research interests include distrib-
uted systems and wireless networks, especially cloud
computing platforms, and ad hoc networks. He has
served as a member for the Editorial Board of two international journals,
Frontiers of Computer Science and Ad Hoc & Sensor Wireless Networks.

Authorized licensed use limited to: SOUTHWEST JIAOTONG UNIVERSITY. Downloaded on September 18,2021 at 01:48:58 UTC from IEEE Xplore. Restrictions apply.




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Black & White)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /AdobeArabic-Bold
    /AdobeArabic-BoldItalic
    /AdobeArabic-Italic
    /AdobeArabic-Regular
    /AdobeHebrew-Bold
    /AdobeHebrew-BoldItalic
    /AdobeHebrew-Italic
    /AdobeHebrew-Regular
    /AdobeHeitiStd-Regular
    /AdobeMingStd-Light
    /AdobeMyungjoStd-Medium
    /AdobePiStd
    /AdobeSansMM
    /AdobeSerifMM
    /AdobeSongStd-Light
    /AdobeThai-Bold
    /AdobeThai-BoldItalic
    /AdobeThai-Italic
    /AdobeThai-Regular
    /ArborText
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /BellGothicStd-Black
    /BellGothicStd-Bold
    /BellGothicStd-Light
    /ComicSansMS
    /ComicSansMS-Bold
    /Courier
    /Courier-Bold
    /Courier-BoldOblique
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /Courier-Oblique
    /CourierStd
    /CourierStd-Bold
    /CourierStd-BoldOblique
    /CourierStd-Oblique
    /EstrangeloEdessa
    /EuroSig
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Helvetica
    /Helvetica-Bold
    /Helvetica-BoldOblique
    /Helvetica-Oblique
    /Impact
    /KozGoPr6N-Medium
    /KozGoProVI-Medium
    /KozMinPr6N-Regular
    /KozMinProVI-Regular
    /Latha
    /LetterGothicStd
    /LetterGothicStd-Bold
    /LetterGothicStd-BoldSlanted
    /LetterGothicStd-Slanted
    /LucidaConsole
    /LucidaSans-Typewriter
    /LucidaSans-TypewriterBold
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MinionPro-Bold
    /MinionPro-BoldIt
    /MinionPro-It
    /MinionPro-Regular
    /MinionPro-Semibold
    /MinionPro-SemiboldIt
    /MVBoli
    /MyriadPro-Black
    /MyriadPro-BlackIt
    /MyriadPro-Bold
    /MyriadPro-BoldIt
    /MyriadPro-It
    /MyriadPro-Light
    /MyriadPro-LightIt
    /MyriadPro-Regular
    /MyriadPro-Semibold
    /MyriadPro-SemiboldIt
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /Symbol
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Webdings
    /Wingdings-Regular
    /ZapfDingbats
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 300
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 900
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.33333
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /Unknown

  /CreateJDFFile false
  /Description <<
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


