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Abstract—Smart roads can achieve a comprehensive, real-time
and accurate perception of road environment, which is of great
significance for intelligent transportation systems (ITS). However,
due to massive data needed to be computed, cloud computing
usually imposes pressure on backhaul and produces high delay. In
this context, mobile edge computing (MEC) provides a promising
solution. Meanwhile, current researches of the task offloading
based on MEC lack global considerations and ignore IoT devices
along the roadside, so optimization on three-side is very necessary
and worth researching. To this end, we consider a scenario of
smart roads including vehicular terminals (VTs), IoT devices
and MEC servers. And we formulate an optimization problem
aiming at minimizing a weighted sum of the costs of energy
consumption and time delay for users side and cost for MEC
servers. On this basis, we propose a three-side dynamic joint task
offloading and resource allocation (TDJORA) scheme. Moreover,
considering that the optimization problem is a multi-objective
optimization problem, we utilize a combination of the particle
swarm optimization (PSO) algorithm and Pareto optimality to
obtain the optimal solution. Simulation results show that our
proposed TDJORA can realize reasonable task offloading and
optimal resource allocation for three sides.

Index Terms—Smart roads; vehicular edge computing; task
offloading; particle swarm optimization

I. INTRODUCTION

As a comprehensive transportation system that guarantees
safety, saves energy, improves transportation efficiency, in-
telligent transportation systems (ITS) has aroused extensive
attention in recent years [1], [2]. Faced with this background,
smart roads [3] stand out for achieving a real-time and accurate
perception of surroundings through the integration of some
advanced technologies, e.g., cloud computing, big data and
Internet of Things (IoT) [4], which can improve the efficiency
of transportation and is of great significance for ITS. In the
current ITS environment, a large number of computation-
intensive and latency-critical applications, e.g., augmented
reality, mobile gaming and speech recognition [5], [6], have
also emerged in vehicular terminals (VTs). Moreover, amounts
of data sensed by multiple vehicle-mounted sensors in real
time is massive [7], which makes it difficult to process tasks
efficiently and timely. At the same time, massive data obtained
from real-time perception of the external environment for IoT
devices along the roadside is also difficult to achieve full local
processing because of limited local processing capacity and
energy consumption.

Aiming at the problem that the local computing resources
of the VTs and IoT devices along the roadside are limited and
it is difficult to process massive data in real time, mobile edge

computing (MEC) is born as a promising solution [8], [9]. By
connecting MEC servers to a roadside unit (RSU), an MRSU
with MEC functions is deployed along the roadside, which
can provide wireless access to VTs and IoT devices. Thus,
by offloading computing tasks from VT and IoT side to the
MRSU side, the processing time delay and local processing
energy consumption can be reduced significantly. However,
in the resource-constrained multi-user scenario, the task of-
floading and resource allocation for VT and IoT side are very
complicated. Therefore, it is indispensable to design a low-
complexity and global task offloading and resource allocation
scheme for multi-user and multi-MEC scenario.

The existing task offloading and resource allocation schemes
based on MEC mainly include optimizing only one side,
that is, optimizing only users or MEC side, and bilateral
optimization, that is, taking into account both users and MEC
side. On the one hand, Paymard et al. [10] jointly allocated
uplink and downlink communication and computing resources
for multi-user scenarios to minimize user-side delay. Zheng et
al. [11] adopted the SemiMarkov Decision Process (SMDP)
to formulate the resource allocation scheme to maximize the
long-term expected total reward of the cloud. On the other
hand, in [2], authors proposed the approach AVARAC, which
mainly addresses the resource management problem in a
vehicular cloud system to maximize the average reward of
the system. In addition, Du et al. [12] proposed a strategy for
optimizing the allocation of communication and computing
resources on both sides of users and servers for the connected
vehicles, which minimizes the cost of both parties.

Most of the existing joint communication and computing
resource allocation schemes based on MEC only consider
the performance of VT side or MEC server, which ignore
the task offloading and resource allocation of IoT devices
along the roadside and do not consider different types of tasks
arrived. Meanwhile, for multi-objective problems, it is only
transformed into a single-objective problem, and lacks global
comprehensive consideration and optimization.

In this paper, we focus on jointly optimizing the task
offloading decision and allocation of communication and
computing resources, to minimize a weighted sum of the
costs of energy consumption and time delay for VT and IoT
side and cost for MRSU side according to different types of
tasks arrived. Due to the NP-hard and multi-objective features
for the joint optimization problem, we combine the three-
dimensional (3D) Pareto front and particle swarm optimization
(PSO) algorithm to solve the formulated problem.
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The rest of the paper is organized as follows. Section
II presents the system model and Section III analyzes the
problem to be solved. The details of our proposed TDJORA
are shown in Section IV. Simulation results are shown in
Section V and conclusions are discussed in Section VI.

II. SYSTEM MODEL

A. Scenario Description

We consider a novel hybrid road scenario called smart roads
where the road is divided into K segments, each of which
is covered by an MRSU. As shown in Fig. 1, this scenario
mainly has three important aspects, including VTs, IoT devices
and MRSU. Suppose that IoT devices are deployed at 20m
intervals and VTs move at an average speed of 20m/s, then
an MRSU has a coverage distance of 500m. Simultaneously,
for the sake of research, we consider a time slot. According
to the above assumption, we can find that the vehicle can
move 0.02m within one time slot. Consequently, the network
can be considered to be quasi-static where VTs and wireless
channels keep unchanged in each time slot but can vary in
different time slots [12]. We denote the set and the number
of VTs served by each MRSU as N = {1, 2, ..., N} and N ,
respectively. Meanwhile, let M = {1, 2, ...,M} and M be the
set and number of IoT devices.

MRSU 1

IoT devices

...

...

...

...

1 MRSU K

MEC  

server 1

MEC  

server K

Wireless 

communication

Fig. 1. Architecture of MRSU-enabled vehicular networks based on smart
roads.

B. Computing Tasks and Processing Model

We denote the task of VT n and IoT m on slot t as Ωn(t) =
{Dn(t), λn(t), A(t)} and Ωm(t) = {Dm(t), λm(t), A(t)},
where Dn(t) and Dm(t) represent bits of computing tasks
on slot t for VT side and IoT side, which are constrained by
0 < Dn(t) < Dmax

n and 0 < Dm(t) < Dmax
m . And processing

density of tasks (in CPU cycles/bit) for VT side and IoT side
are denoted as λn(t) and λm(t) respectively. A(t) represents
the arriving service type, shown as

A(t) = (α(t), β(t)) =

 (1, 0), Delay-sensitive
(0, 1), Power-sensitive
( 12 ,

1
2 ), Otherwise

(1)

When a large number of different types of tasks reach VT
side and IoT side, they will consume different computing
resources. Let an(t) and am(t) denote the offloading decision
of VT n and IoT m on slot t respectively, whose value is
between 0 and 1. an(t) = 1 and am(t) = 1 indicate the tasks
are all offloaded to MRSU side to process, and an(t) = 0
and am(t) = 0 indicate the tasks are all processed locally.

Otherwise, part of the tasks are processed locally, and part of
them are offloaded to MRSU side. In each slot t, if tasks are
executed locally, the power consumption of VT n and IoT m
is pn(t) = kvfn(t)

3 and pm(t) = kIfm(t)3, where kv and kI
are a constant coefficient related to the CPU chip architecture
[13]. fn(t) and fm(t) denote the local processing capability
(in CPU cycles/s) of VT n and IoT m, which are limited by
0 ≤ fn(t) ≤ fmax

n (t) and 0 ≤ fm(t) ≤ fmax
m (t).

C. Communication Model

We consider the communication between VTs and MRSU
to use the wireless channel for uplink and downlink data
transmission, which is similar to the communication between
IoT devices and MRSU. Let W up

VT and WDn
VT be the uplink

and downlink wireless channel bandwidth between VTs and
MRSU, respectively. And let W up

I and WDn
I be the uplink and

downlink wireless channel bandwidth between IoT devices and
MRSU, respectively. By blocking communication bandwidth
resources, uplink communication resource blocks for VTs
and IoT devices are denoted as Bup

VT = {1, 2, . . . , Bup
VT}

and Bup
I = {1, 2, . . . , Bup

I }, respectively. The downlink re-
source blocks are expressed as BDn

VT = {1, 2, . . . , BDn
VT} and

BDn
I = {1, 2, . . . , BDn

I }, respectively. ρbupn (t) represents the
uplink binary resource block assignment indicator of VTs,
where ρb

up

n (t)= 1 means that the resource block Bup
VT will

be assigned to the user VT and otherwise, ρbupn (t)= 0.
The transmission power of VTs to offload the computing

tasks to the MRSU in uplink and the transmission power of
the MRSU to send the executed task of VTs in downlink
are denoted by pb

up

n (t)and pbDn

n (t), respectively. We denote
the uplink and downlink channel power gains between the
MRSU and VTs as Gbup

n (t) and GbDn

n (t). And the uplink
and downlink interference signal power between VTs and
MRSU are denoted by Ib

up

n (t) and IbDn

n (t). Moreover, the
uplink and downlink summation of the received additive white
Gaussian noise (AWGN) power are expressed as (σbup (t))

2

and (σbDn (t))
2. In this way, the maximum uplink transmission

rate of each resource block for VT n in slot t can be given by

rb
up

n (t) = W
up

VTlog2(1 +
ρb

up

n (t)pb
up

n (t)Gbup

n (t)

Ibupn (t) + (σbup (t))
2 ) (2)

where W
up

VT = W up
VT/B

up
VT, which denotes the bandwidth

of each uplink resource block for VTs and rupn (t) =
Bup

n∑
bup=1

rb
up

n (t), which denotes the uplink data transmission rate

for all communication resource blocks. In this context, we can
obtain the uplink energy consumption for tasks produced by
VTs, which is given by

Eup
n (t) = (

Bup
VT∑

bup=1

pb
up

n (t))T up
n (t) (3)

where T up
n (t) = Dn(t)/r

up
n (t), which indicates the time

required for VTs to offload local tasks to MRSU and Dn(t)
denotes the amount of tasks that VTs need to offload to MRSU.

Similarly as above, the maximum uplink transmission rate
of each resource block for IoT m in slot t can be given by

rb
up

m (t) = W
up

I log2(1 +
ρb

up

m (t)pb
up

m (t)Gbup

m (t)

Ibupm (t) + (σbup (t))
2 ) (4)
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where W
up

I = W up
I /Bup

I and rupm (t) =
Bup

I∑
bup=1

rb
up

m (t).

Besides this, the uplink energy consumption for tasks pro-
duced by IoT devices is given by

Eup
m (t) = (

Bup
I∑

bup=1

pb
up

m (t))T up
m (t) (5)

where T up
m (t) = Dm(t)/rupm (t), which indicates the time

required for IoT devices to offload local tasks to MRSU and
Dm(t) denotes the amount of tasks that IoT devices need to
offload to MRSU.

D. Cost Model

The cost of VT and IoT side consists of two parts, energy
consumption and time delay caused by task processing and
transmission.

1) Cost of VTs: On the one hand, in local processing, the
monetary cost of VT n can be given by COST local

n (t) =
kvωvDn(t)λn(t)(fn(t))

2, where ωv (in $/J) is a human-
determined weight coefficient, which is used to convert en-
ergy consumption into money and depends on the human-
sensitiveness on money and energy consumption [13]. VT n
needs to pay for different costs and fees if offloading tasks
to remote processing:(i) The cost of transmitting per bit data
in uplink transmission that VT n needs to pay to MRSU,
where Φn(t) is the price of transmitting per bit data. (ii) The
energy consumption of VT n in data uplink transmission. (iii)
The cost of processing tasks of the virtual machine (VM) for
MRSU side. So the monetary cost of VT n in task offloading
is an(t)Φn(t)Dn(t)+an(t)ωvE

up
n (t)+an(t)ϕvDn(t)λVM(t).

Thus, the cost (in $) of each VT n in slot t is given by

COSTn(t) = (1− an(t))kvωvDn(t)λn(t)(fn(t))
2

+an(t)[Φn(t)Dn(t) + ωvE
up
n (t) + ϕvDn(t)λVM(t)]

(6)

On the other hand, considering that tasks can be processed
locally or offloaded to the MRSU side, the time delay mainly
includes local processing delay, uplink transmission delay,
MRSU processing delay, and downlink transmission delay.
Among them, local processing delay is denoted by T local

n ,
which can be given as

T local
n = (1−an(t))λn(t)Dn(t)

fn(t)
(7)

When part of tasks are offloaded to the MRSU side for
processing, uplink transmission time delay for VT side can
be obtained according to formula (4), which is denoted by
T up
n (t). And task processing time delay on the MRSU side is

given by
T local
MRSU−Vn

= an(t)λVM(t)Dn(t)
fVM(t) (8)

As such, the total delay in processing tasks for VT side can
be expressed as:

Delayn = max{T local
n (t), T offload

n (t)} (9)
In the above formula, T offload

n (t) = T local
MRSU−Vn

+

T up
n (t)+TDn

n (t), which refers to processing and transmission
delays caused by task offloading.

2) Cost of IoT Devices: In local processing for IoT side,
the monetary cost of IoT m can be given by COST local

m (t) =

kIωIDm(t)λm(t)(fm(t))2, where the definition of ωI (in $/J)
is the same as ωv [13]. When the amount of data acquired by
perception is too large to process in real time, task offloading
is also required. Similarly, the monetary cost of IoT m in
task offloading is am(t)Φm(t)Dm(t) + am(t)ωIE

up
m (t) +

am(t)ϕIDm(t)λVM(t). Thus, the cost (in $) of each IoT m
in slot t is given by

COSTm(t) = (1− am(t))kIωIDm(t)λm(t)(fm(t))2

+am(t)[Φm(t)Dm(t) + ωIE
up
m (t) + ϕIDm(t)λVM(t)]

(10)
At the same time, local processing time delay for IoT side

can be given by

T local
m = (1−am(t))λm(t)Dm(t)

fm(t) (11)

The processing delays for tasks from the IoT side handled
by the MRSU side is expressed as

T local
MRSU−Im

= am(t)λVM(t)Dm(t)
fVM(t) (12)

As a result, the total delay in processing tasks for IoT side
can be given by

Delaym = max{T local
m (t), T offload

m (t)} (13)

In the above formula, T offload
m (t) = T local

MRSU−Im
+

T up
m (t)+TDn

m (t), which refers to processing and transmission
delays caused by task offloading.

3) Cost of MRSU: The MRSU side is used to handle tasks
from VT side and IoT side. On the one hand, the cost of task
processing is paid by VT side and IoT side. On the other hand,
the MRSU side needs to pay for energy consumption cost,
the downlink communication cost and occupying VM cost for
processing tasks from VT side and IoT side. We denote γ(t)
as the electricity bills (in $) for running a VM. So, the cost
(in $) of MRSU in slot t is given by

COSTMRSU(t) = an(t)ωvE
Dn
n (t)+an(t)Dn(t)γ(t)

+an(t)ωvkMRSUDn(t)λVM(t)(fVM(t))2

+am(t)ωIkMRSUDm(t)λVM(t)(fVM(t))2

+am(t)ωIE
Dn
m (t) + am(t)Dm(t)γ(t)

(14)

III. PROBLEM FORMULATION AND TRANSFORMATION

A. Three-Side Problem Formulation

In this section, we propose three optimization problems
for VTs, IoT devices and MRSU respectively, which aim
at minimizing their respective cost under system constraints,
including energy consumption and time delay for task pro-
cessing. Simultaneously, in order to unify the two indices,
we introduce a coefficient ξ, which represents the weight
on the time delay relative to energy consumption for task
processing in the total cost of system [14]. Thus, the three-side
optimization problem is formulated as follows.

1) VT Side Optimization Problem
For VT side optimization problem, we need to optimize

the offloading decision an(t), the local CPU processing fre-
quency fn(t) and the uplink binary resource block assignment
indicator ρb

up

n (t) under given constraints. So, the VT side
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optimization problem is formulated as follows:

min
an(t),fn(t),

ρbup

n (t),fVM(t)

1
T

Nt∑
n=1

T∑
t=1

{αCOSTn(t) + ξβDelayn(t)}

s.t.C-V1 : 0 ≤ an(t) ≤ 1,∀t ∈ T, n ∈ N
C-V2 : 0 ≤ Dn(t) ≤ Dmax

n ,∀t ∈ T, n ∈ N
C-V3 : 0 ≤ fn(t) ≤ fmax

n (t),∀t ∈ T, n ∈ N
C-V4 : ρb

up

n (t) ∈ {0, 1},∀t ∈ T, n ∈ N , bup ∈ Bup
VT

C-V5 : 0 ≤ fVM(t) ≤ fmax
VM (t),∀t ∈ T

where C-V1 represents computation offloading decisions,
whose value is between 0 and 1; C-V2 denotes data size
of computing tasks; C-V3 is the CPU processing frequency
constraint for each VT; C-V4 indicates the uplink binary
resource block assignment indicator, whose value is 0 or 1;
C-V5 is the VM processing frequency constraint for MRSU
side.

2) IoT Side Optimization Problem
Similarly, for IoT side optimization problem, we need

to optimize the offloading decision am(t), the local CPU
processing frequency fm(t) and the uplink binary resource
block assignment indicator ρbup

m (t) under given constraints. So,
the IoT side optimization problem is formulated as follows:

min
am(t),fm(t),

ρbup

m (t),fVM(t)

1
T

Mt∑
m=1

T∑
t=1

{αCOSTm(t) + ξβDelaym(t)}

s.t.C-I1 : 0 ≤ am(t) ≤ 1,∀t ∈ T,m ∈ M
C-I2 : 0 ≤ Dm(t) ≤ Dmax

m ,∀t ∈ T,m ∈ M
C-I3 : 0 ≤ fm(t) ≤ fmax

m (t),∀t ∈ T,m ∈ M
C-I4 : ρb

up

m (t) ∈ {0, 1},∀t ∈ T,m ∈ M, bup ∈ Bup
I

C-I5 : 0 ≤ fVM(t) ≤ fmax
VM (t),∀t ∈ T

where C-I1 represents computation offloading decisions,
whose value is between 0 and 1; C-I2 denotes data size
of computing tasks; C-I3 is the CPU processing frequency
constraint for each IoT device; C-I4 indicates the uplink binary
resource block assignment indicator, whose value is 0 or
1; C-I5 is the VM processing frequency constraint for each
MRSU.

3) MRSU Side Optimization Problem
Moreover, MRSU side optimization aims at minimizing the

average cost of MRSU by jointly optimizing the offloading
decision an(t) for VT side and am(t) for IoT side, the local
CPU processing frequency fVM(t) and the downlink binary
resource block assignment indicator ρbDn

n (t) and ρbDn

m (t) under
given constraints. So, the MRSU side optimization problem is
formulated as follows:

min
an(t),am(t),ρbDn

n (t),

ρbDn

m (t),fVM(t)

1
T

T∑
t=1

COSTMRSU(t)

s.t.C-M1 : 0 ≤ an(t) ≤ 1, 0 ≤ am(t) ≤ 1,∀t ∈ T
C-M2 : 0 ≤ fVM(t) ≤ fmax

VM (t),∀t ∈ T, n ∈ N ,m ∈ M
C-M3 : ρb

Dn

n (t), ρb
Dn

m (t) ∈ {0, 1},∀t ∈ T, n ∈ N ,m ∈ M
where C-M1 represents computation offloading decisions for
VT side and IoT side; C-M2 is the CPU processing frequency
constraint for each VM for MRSU side; C-M3 indicates the
downlink binary resource block assignment indicator for VT
side and IoT side, whose value is 0 or 1.

B. Problem Transformation

Our goal is to minimize the tripartite weighted sum of time
delay and cost of VT, IoT, and MRSU side based on different
types of services arrived. When the tasks are offloaded to
the MRSU side for processing, considering that the final
calculation result is often a numerical value, the data amount
of which is small, so the energy consumption of downlink
transmission can be ignored. And we take one time slot as
the research object, so the three-side optimization problem is
formulated as follows according to (15), (16) and (17):

(P) min
an(t),fn(t),

ρbup

n (t),fVM(t)

Nt∑
n=1

{αCOSTn(t) + ξβDelayn(t)}

min
am(t),fm(t),

ρbup

m (t),fVM(t)

Mt∑
m=1

{αCOSTm(t) + ξβDelaym(t)}

min
an(t),am(t),fVM(t)

COSTMRSU(t)

s.t.(C-V1)-(C-V5), (C-I1)-(C-I4)

IV. OUR PROPOSED TDJORA

A. PSO Based on 3D Pareto Optimality

Particle swarm optimization (PSO) algorithm is derived
from the study of bird predation behavior, whose main idea
is to find the optimal solution through cooperation and in-
formation sharing between individuals in a swarm. We adopt
PSO algorithm to solve the optimization problem because of
its simplicity and ease of implementation. Firstly, initialize
a group of random particles, then find the optimal solution
through iteration. In each iteration, the particle updates itself
by tracking two values, pbest and gbest. After finding these
two optimal values, the particle updates its velocity and
position using the equation (15).

vi = ω × vi + c1 × rand()× (pbesti − xi)
+ c2 × rand()× (gbesti − xi)

xi = xi + vi

(15)

where ω represents a dynamic inertia weight, whose value
changes continuously with iteration. Moreover, c1 and c2 serve
as learning factor. pbesti and gbesti indicate local optimal
solution and global optimal solution respectively. Since the
problem to be solved is a multi-objective optimization prob-
lem, we introduce the Pareto optimality to find an optimal 3D
Pareto front. The Pareto optimal solution is to find as many
non-dominated solutions as possible to ensure that the interests
of all parties are not damaged.

B. Proposed Three-Side Dynamic Joint Task Offloading and
Resource Allocation (TDJORA) Scheme

Considering different types of services and each side of
the entire system, we propose a three-side dynamic joint task
offloading and resource allocation scheme, which minimizes
a weighted sum of the costs of energy consumption and time
delay for VT and IoT side and cost for MRSU side. At the
same time, the optimization problem is solved by PSO algo-
rithm based on 3D Pareto optimality so as to obtain optimal
task offloading decision and resource allocation scheme.
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V. SIMULATION AND RESULT DISCUSSION

A. Simulation Settings

In our simulations, we set up a freeway model based on
MATLAB. The major parameters are included in TABLE I.

TABLE I: Simulation Parameters

Parameter Value
Number of VTs N {20, 30, 40, 50, 60}
Number of IoT devices M {40, 80, 120, 160, 200}
Input data size Dn, Dm 0.1 − 1M
Processing density of VT λn 1000(cycles/bit)
Processing density of IoT λm 10000(cycles/bit)
Processing density of MRSU λVM 100(cycles/bit)
Max. local processing capability for VT fmax

n 1.4(Gcycles/s)
Max. local processing capability for IoT fmax

m 0.8(Gcycles/s)
Effective switched capacitance kv 10−27

Effective switched capacitance at MRSU kMRSU 10−29

Uplink bandwidth Wup
VT,WUp

I 10MHz

Downlink bandwidth WDn
VT,WDn

I 10MHz

Transmit power of VT and IoT pbup

n , pbup

m 1W

Power gains Gbup

n and Gbup

m 1
Number of uplink and downlink RBs Bup

VT, BDn
VT 20 ∗ N

AWGN power (σbup
)
2 and (σbDn

)
2 −100dBm

price for transmitting per bit data in uplink 1.16 ∗ 10−10($/bit)
price for transmitting per bit data in downlink 0.5 ∗ 10−10($/bit)
Energy-money weight coefficient ωv, ωI 2.44 ∗ 10−4($/J)
Price for MRSU to process tasks 3 ∗ 10−10($/cycle)
Max. processing capability fmax

VM of MRSU 300(Gcycles/s)
Size of the swarms s 200
Inertia weight factor w 0.4 − 0.8
Learning factor θ1 and θ2 1.5

B. Simulation Result and Discussion

We perform simulations mainly for delay-sensitive and
power-sensitive services in terms of our objective, a weighted
sum of costs of time delay and energy consumption for VT
and IoT side and cost for MRSU side. By finding the Pareto
optimal solution to the optimization problem, the respective
goals are minimized and the 3D Pareto front is obtained.

As is shown in Fig. 2 (a), the optimal solution for joint
task offloading and resource allocation is on the 3D Pareto
front, which mainly describes the distribution of the optimal
solution that satisfies the minimization of the cost of all parties.
Moreover, it can be seen from Fig. 2 (b) that the cost between
VT side and IoT side is inversely proportional, which also
indicates that in the case of limited resources on the MRSU
side, there is a competitive relationship between VTs and
IoT devices. And the distribution of the optimal solution is
consistent with the two-dimensional Pareto flat, which can also
prove the validity and correctness of the 3D Pareto front.

(a) The 3D pareto front (b) The top view of 3D pareto front

Fig. 2. An illustration of optimal global 3D Pareto front

VI. CONCLUSION

In this paper, we have studied a three-side optimization
framework based on smart roads in an MRSU-enabled vehicu-
lar network. Meanwhile, the problem of jointly task offloading
and resource allocation is formulated as an NP-hard problem,

whose goal is to minimize a weighted sum of the costs for user
side and cost for MRSU side. Moreover, we have proposed a
TDJORA scheme and have solved the optimization problem
by using an PSO algorithm combined with Pareto optimality.
Through extensive simulations, we have analyzed the perfor-
mances of TDJORA by 3D Pareto front, which shows our
proposed TDJORA can realize reasonable task offloading and
optimal resource allocation according to different types of
services arrived.
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